Bubble Burst Detergent Nowchem Version No: **1.2**Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 2 Issue Date: **06/04/2016**Print Date: **25/11/2018**L.GHS.AUS.EN #### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Bubble Burst Detergent | |-------------------------------|------------------------| | Synonyms | Not Available | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses An everyday economical detergent. #### Details of the supplier of the safety data sheet | Registered company name | Nowchem | |-------------------------|-----------------------------------| | Address | 112A Albatross Road NSW Australia | | Telephone | (02) 4421 4099 | | Fax | (02) 4421 4932 | | Website | www.nowchem.com.au | | Email | sales@nowchem.com.au | #### **Emergency telephone number** | Association / Organisation | Nowchem | |-----------------------------------|----------------| | Emergency telephone numbers | (02) 4421 4099 | | Other emergency telephone numbers | 0413 809 255 | # **SECTION 2 HAZARDS IDENTIFICATION** #### Classification of the substance or mixture ${\it HAZARDOUS\ CHEMICAL.\ NON-DANGEROUS\ GOODS.\ According\ to\ the\ WHS\ Regulations\ and\ the\ ADG\ Code.}$ #### CHEMWATCH HAZARD RATINGS | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 0 | | | | Toxicity | 0 | | 0 = Minimum | | Body Contact | 2 | | 1 = Low
2 = Moderate | | Reactivity | 0 | | 3 = High | | Chronic | 0 | | 4 = Extreme | | Poisons Schedule | Not Applicable | | |--------------------|---|--| | Classification [1] | Serious Eye Damage Category 1 | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | #### Label elements Hazard pictogram(s) Chemwatch: 9-190627 Page 2 of 9 Version No: 1.2 #### **Bubble Burst Detergent** Issue Date: **06/04/2016**Print Date: **25/11/2018** SIGNAL WORD DANGER #### Hazard statement(s) H318 Causes serious eye damage. # Precautionary statement(s) General | P101 | If medical advice is needed, have product container or label at hand. | | |------|---|--| | P102 | Keep out of reach of children. | | | P103 | Read label before use. | | #### Precautionary statement(s) Prevention | P101 | If medical advice is needed, have product container or label at hand. | | |------|---|--| | P102 | Keep out of reach of children. | | | P103 | Read label before use. | | | P280 | Wear protective gloves/eye protection when appropriate. | | #### Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | |----------------|--| | P310 | Immediately call a POISON CENTER or doctor/physician. | # Precautionary statement(s) Storage Not Applicable #### Precautionary statement(s) Disposal Not Applicable # SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS #### Substances See section below for composition of Mixtures # Mixtures | CAS No | %[weight] | Name | |------------|-----------|---| | 8046-53-5 | <10 | (linear)alkylbenzenesulfonic acid, sodium salts | | 68891-38-3 | <10 | sodium linear-(C12-14)alkyl ether sulfate | | 8051-30-7 | <10 | diethanolamine cocoate | | 2634-33-5 | <1 | 1,2-benzisothiazoline-3-one | # **SECTION 4 FIRST AID MEASURES** # Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. | #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. #### **SECTION 5 FIREFIGHTING MEASURES** #### **Extinguishing media** - ▶ There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area. # Special hazards arising from the substrate or mixture Fire Incompatibility None known. Chemwatch: 9-190627 Page 3 of 9 Issue Date: 06/04/2016 Version No: 1.2 Print Date: 25/11/2018 # **Bubble Burst Detergent** Advice for firefighters Alert Fire Brigade and tell them location and nature of hazard. $\ensuremath{\,\boldsymbol{\,\cdot\,}}$ Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. Fire Fighting ▶ DO NOT approach containers suspected to be hot. If safe to do so, remove containers from path of fire. $\,\blacktriangleright\,$ Equipment should be thoroughly decontaminated after use. ► Non combustible. ▶ Not considered a significant fire risk, however containers may burn. Fire/Explosion Hazard May emit poisonous fumes. May emit corrosive fumes. HAZCHEM Not Applicable #### **SECTION 6 ACCIDENTAL RELEASE MEASURES** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 # Methods and material for containment and cleaning up | methods and material for containment and cleaning up | | | |--|--|--| | Minor Spills | Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. | | | Major Spills | Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services. | | Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 HANDLING AND STORAGE** #### Precautions for safe handling | Precautions for safe nandling | 9 | |-------------------------------
---| | Safe handling | Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. DO NOT allow clothing wet with material to stay in contact with skin | | Other information | | # Conditions for safe storage, including any incompatibilities | Suitable container | Polyethylene or polypropylene container. Packing as recommended by manufacturer (HDPE). Check all containers are clearly labelled and free from leaks. | |-------------------------|--| | Storage incompatibility | None known | # **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** # **Control parameters** OCCUPATIONAL EXPOSURE LIMITS (OEL) INGREDIENT DATA Issue Date: 06/04/2016 #### **Bubble Burst Detergent** Not Available #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | | |---|-----------------------------|--------|---------------|---------------|--| | Bubble Burst Detergent | Not Available Not Available | | Not Available | Not Available | | | Ingredient | Original IDLH | | Revised IDLH | | | | (linear)alkylbenzenesulfonic acid, sodium salts | Not Available | | Not Available | | | | sodium linear-(C12-14)alkyl ether sulfate | Not Available | | Not Available | | | | diethanolamine cocoate | Not Available | | Not Available | | | | 1,2-benzisothiazoline-3-one | Not Available | | Not Available | | | #### MATERIAL DATA Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can: - cause inflammation - cause increased susceptibility to other irritants and infectious agents - lead to permanent injury or dysfunction - permit greater absorption of hazardous substances and - ▶ acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure. #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Appropriate engineering 're controls Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. # Personal protection #### Personal protection - Safety glasses with side shields. - Chemical goggles #### Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection See Hand protection below ▶ Wear chemical protective gloves, e.g. PVC. #### NOTE The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: # Hands/feet protection - ► frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Chemwatch: **9-190627**Version No: **1.2** # Page 5 of 9 Bubble Burst Detergent Issue Date: **06/04/2016**Print Date: **25/11/2018** | Body protection | See Other protection below | |------------------|---| | Other protection | Barrier cream. Skin cleansing cream. Eye wash unit. | #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** # Information on basic physical and chemical properties | Appearance | Clear Orange Liquid | | | |--|---------------------|---|---------------| | Physical state | Liquid | Relative density (Water = 1) | 0.99 - 1.01 | | Odour | Bubble Gum | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | 7 - 8 | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not
Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Available | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Non Flammable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | # **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 TOXICOLOGICAL INFORMATION** # Information on toxicological effects | mormation on toxicological | | |----------------------------|--| | Inhaled | The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. | | Ingestion | The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. | | Skin Contact | The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | Еуе | Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. | | Chronic | Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Limited evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a significant number of individuals at a greater frequency than would be expected from the response of a normal population. Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking. | #### Page 6 of 9 Issue Date: **06/04/2016**Print Date: **25/11/2018** #### **Bubble Burst Detergent** There exists limited evidence that shows that skin contact with the material is capable either of inducing a sensitisation reaction in a significant number of individuals, and/or of producing positive response in experimental animals. Absorbed sulfonates are quickly distributed through living systems and are readily excreted. Toxic effects may result from the effects of binding to proteins and the ability of sulfonates to translocate potassium and nitrate (NO3-) ions from cellular to interstitial fluids. Airborne sulfonates may be responsible for respiratory allergies and, in some instances, minor dermal allergies. | | TOXICITY | IRRITATION | | |--|--|--------------------------------|--| | Bubble Burst Detergent | Not Available | | | | (linear)alkylbenzenesulfonic
acid, sodium salts | TOXICITY Oral (rat) LD50: 800 mg/kg ^[2] | | RRITATION
of Available | | sodium linear-(C12-14)alkyl
ether sulfate | TOXICITY dermal (rat) LD50: >=2000 mg/kg ^[1] Oral (rat) LD50: >2000 mg/kg ^[1] | | IRRITATION Not Available | | diethanolamine cocoate | TOXICITY Not Available | IRRITATION Not Available | | | 1,2-benzisothiazoline-3-one | TOXICITY dermal (rat) LD50: >2000 mg/kg ^[1] Oral (rat) LD50: 454 mg/kg ^[1] | | IRRITATION Not Available | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity | / 2.* Value obtained from manu | facturer's SDS. Unless otherwise specified | Linear alkylbenzene sulfonates (LAS) are classified as Irritant (Xi) with the risk phrases R38 (Irritating to skin) and R41 (Risk of serious damage to eyes) according to CESIO (CESIO 2000). LAS are not included in Annex 1 of list of dangerous substances of Council Directive 67/548/EEC. Linear alkylbenzene sulfonic acids (LABS) are strong acids (pKa<2) are classified as corrosive (R34) data extracted from RTECS - Register of Toxic Effect of chemical Substances Acute toxicity: The available data indicate minimal to moderate toxicity, with LD50 values ranging from 500 to 2000 mg/kg body weight (bw). Acute inhalation data also indicate a lack of significant toxicity. Available dermal exposure data also shows a lack of significant toxicity. LAS are readily absorbed by the gastrointestinal tract after oral administration in animals. LAS are not readily absorbed through the skin. The bulk is metabolised in the liver to sulfophenylic carboxyl acids. The metabolites are excreted primarily via the urine and faeces. The main urinary metabolites in rats are sulfophenyl butanoic acid and sulfophenyl pentanoic acid. Accumulation of LAS or its main metabolites has not been established in any organ after repeated oral indestion. No serious injuries or fatalities in man have been reported following accidental ingestion of LAS-containing detergent. The main clinical signs observed after oral administration to rats of doses near or greater than the LD50 values consisted of reduced voluntary activity, diarrhoea, weakness etc. Death usually occurred within 24 hours of administration. Rats appear to be more sensitive to LAS than mice. # **Bubble Burst Detergent** LAS and branched alkylbenzene sulfonates may cause irritation of the eyes, skin and mucous membranes. LAS are relatively more irritating to the skin than the corresponding branched alkylbenzene sulfonates. The potential of LAS to irritate the skin depends on the concentration applied. LAS have been classified as irritating to skin at concentrations above 20% according to EU-criteria. Human skin can tolerate contact with solution of up to 1% LAS for 24 hours resulting in only mild irritation. Application of > 5% LAS to the eyes of rabbits produced irritation. Concentration of < 0.1% LAS produced mild to no irritation. Skin sensitization was not seen in 2,294 volunteers exposed to LAS or in 17,887 exposed to formulations of LAS. Repeat dose toxicity: A feeding study indicated that LAS, when administered for 2 years at extremely high levels (0.5%) in the diets to rats, produced no adverse effects on growth, health or feed efficiency. **Genotoxicity:** The mutagenic potential of LAS was tested using *Salmonella typhimurium* strains, using Ames test. In these studies, LAS was not mutagenic. The available long-term studies are inadequate for evaluating the carcinogenic potential of LAS in laboratory animals. The studies available (oral administration to rats and mice) do not show any evidence of
carcinogenicity. Reproductive toxicity: In general no specific effect of LAS on reproductive processes has been seen, although dosages causing maternal toxicity may also induce some effects on reproduction. No teratogenic effects attributed to LAS exposure have been observed. Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products, Environment Project, 615, 2001. Torben Madsen et al: Miljoministeriet (Danish Environmental Protection Agency) #### SODIUM LINEAR-(C12-14)ALKYL ETHER SULFATE & DIETHANOLAMINE COCOATE No significant acute toxicological data identified in literature search. \\ | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: Data either not available or does not fill the criteria for classification Data available to make classification Chemwatch: 9-190627 Page 7 of 9 Issue Date: 06/04/2016 Version No: 1.2 Print Date: 25/11/2018 #### **Bubble Burst Detergent** Toxicity | Bubble Burst Detergent | ENDPOINT | 1 | TEST DURATION (HR) | SPECIES | | S | VALUE | | | SOURCE | | |-----------------------------|---------------|--------------------|---------------------|---------|-------------------------------|-------------------------|-------|------------|-----------------|--------|--| | | Not Available | ١ | Not Available Not A | | Not Avai | Available Not Available | | ailable | e Not Available | | | | linear)alkylbenzenesulfonic | ENDPOINT | | TEST DURATION (HR) | | | SPECIES | | VALU | JE | SOURCE | | | acid, sodium salts | LC50 | | 96 | | Fish | | 5mg/L | | L | 4 | | | | | | | | | | | | 1 | | | | sodium linear-(C12-14)alkyl | ENDPOINT | | T DURATION (HR) | SPEC | _ | | | | VALUE | SOURCE | | | ether sulfate | EC50 | 72 | | Algae | or other a | quatic plants | | | 27mg/L | 2 | | | | NOEC | 672 | | Fish | | | | | 0.14mg/L | 2 | | | | ENDPOINT | TEST DURATION (HR) | | SPECI | SPECIES | | | VALUE | SOURCE | | | | | LC50 | 96 | I DORATION (HK) | | Fish | | | =2.8mg/L | 1 | | | | | EC50 | 48 | | Crusta | CB3 | | | - | =2.39mg/L | 1 | | | diethanolamine cocoate | EC50 | 96 | | | | uatic plants | | | =2.3mg/L | 1 | | | | EC0 | 96 | | - | | uatic plants | | - | =1mg/L | 1 | | | | NOEC | 504 | | Crusta | | , | | | =1mg/L | 1 | | | | | | | | | | | | | | | | | ENDPOINT | TES | T DURATION (HR) | SPECII | ES | | | ٧ | ALUE | SOURCE | | | | LC50 | 96 | 96 | | Fish | | | 1.6mg/L | | 4 | | | ,2-benzisothiazoline-3-one | EC50 | 48 | | Crusta | Crustacea | | | 0.062mg/L | | 4 | | | | EC50 | 72 | 72 | | Algae or other aquatic plants | | | 0.0403mg/L | | 2 | | | | NOEC | 72 | | Algae o | or other aq | uatic plants | | 0 | .055mg/L | 2 | | | | | | | | | | | | | | | # For surfactants: Environmental fate: Ecotoxicity: Octanol/water partition coefficients cannot easily be determined for surfactants because one part of the molecule is hydrophilic and the other part is hydrophobic. Consequently they tend to accumulate at the interface and are not extracted into one or other of the liquid phases. As a result surfactants are expected to transfer slowly, for example, from water into the flesh of fish. During this process, readily biodegradable surfactants are expected to be metabolised rapidly during the process of bioaccumulation. This was emphasised by the OECD Expert Group stating that chemicals are not to be considered to show bioaccumulation potential if they are readily biodegradable. (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Several anionic and nonionic surfactants have been investigated to evaluate their potential to bioconcentrate in fish. BCF values (BCF - bioconcentration factor) ranging from 1 to 350 were found. These are absolute maximum values, resulting from the radiolabelling technique used. In all these studies, substantial oxidative metabolism was found resulting in the highest radioactivity in the gall bladder. This indicates liver transformation of the parent compound and biliary excretion of the metabolised compounds, so that 'real' bioconcentration is overstated. After correction it can be expected that 'real' parent BCF values are one order of magnitude less than those indicated above, i.e. 'real' BCF is <100. Therefore the usual data used for classification by EU directives to determine whether a substance is 'Dangerous to the 'Environment' has little bearing on whether the use of the surfactant is environmentally acceptable. Surfactant should be considered to be toxic (EC50 and LC50 values of < 10 mg/L) to aquatic species under conditions that allow contact of the chemicals with the organisms. The water solubility of the chemicals does not impact the toxicity except as it relates to the ability to conduct tests appropriately to obtain exposure of the test species. The acute aquatic toxicity generally is considered to be related to the effects of the surfactant properties on the organism and not to direct chemical toxicity #### For linear alkylbenzene sulfonic acids (LABS) (and their salts): Environmental fate: LABS are highly water soluble (miscible) and have a relatively low Kow. The environmental fate data indicate that these chemicals are highly susceptible to photo-and biodegradation. LABS are strong acids (pkta <1) that are completely ionised in aqueous solutions. The chemical species present in aqueous solutions at neutral (physiological) pH is the linear alkylbenzene sulfonate (the LAS ion) (C10-14 linear alkyl benzene-SO3-), the identical species present in solutions of LAS, where the counter ion (typically sodium, calcium or ammonium) will disassociate to form the LAS anion. Thus, the physical-chemical, environmental fate, ecotoxicity and toxicity properties of the LABS and LAS would be expected to be similar. It should be noted that the LABS are liquids and LAS is a solid at room temperature. However, in water the difference between the LAB sulfonic acids and LAS disappears as dissociation results in the same ion in solution. Therefore, parameters such as Kow, water solubility and pH/pKa are appropriate to compare. The octanol-water partition coefficients are around 2 (logKow) for all of the chemicals in this category LABS are not expected to volatilise significantly. Fugacity modeling predicts that most of these chemicals will partition to the soil and water. Very little partitions to the air or sediment. Photodegradation is estimated (using EPI Suite software) to be a significant mechanism for breakdown. Based on the model estimates, the hydroxyl radical reaction half-lives ranged from about 7 to 8.6 hours. Estimated data for LAS were similar. Furthermore, measured data for LAS suggest even more rapid photodegradation, with 95% of the material degraded within 20 minutes at 20 C in a laboratory study. Experimental data data indicates that LAS is stable in water. LABS are generally biodegradable. Measured biodegradation data indicate substantial microbial degradation under aerobic conditions. For dodecylbenzene sulfonic acid 69% of the material mineralised after 28 days. Biodegradation of the C10-16 derivatives and the LAS are also rapid, with 93% or greater of the material degrading within 28 or 37 days. In addition, studies show that straight chain alkylbenzene sulfonate materials readily degrade, with the shorter chain length compounds degrading more rapidly. Thus, the data indicate that these chemicals are highly susceptible to degradation, both by photolytic and microbial mechanisms. The initial step in the biodegradation of LABS under aerobic conditions is an omega -oxidation of the terminal methyl group of the alkyl chain to form a carboxylic acid. Further degradation proceeds by a stepwise shortening of the alkyl chain by beta -oxidation leaving a short-chain sulfophenyl carboxylic acid. In the presence of molecular oxygen the aromatic ring structure hydrolyses to form a dihydroxy-benzene structure which is opened before desulfonation of the formed sulfonated dicarboxylic acid. The final degradation steps have not been investigated in details but are likely to occur by general bacterial metabolic routes involving a total mineralisation and assimilation into biomass. Both the initial omega -oxidation and the hydroxylation of the ring structure of LAS require molecular oxygen, and they are not expected to take place under anoxic conditions. The BioConcentration Factor (BCF) tends to increase with increasing alkyl chain length but also the position of the aryl sulfonate moiety was important. A higher BCF was seen for linear alkyl benzenesulfonate isomers with the aryl sulfonate attached. Available data indicate that LABS have low to moderate bioaccumulation potential, with a bioconcentration factor for dodecyl benzene sulfonic acid of 130. LAS has bioconcentration factors that range from 22 to 87. #### Ecotoxicity: Numerous studies have been performed to determine the effects of LABS towards aquatic organisms. The aquatic effect concentrations that were observed in these studies are highly variable. This variation is partly related to the testing of different isomers and homologues, but it may also be due to the specific test conditions and species. The length of the alkyl chain is an important factor determining the aquatic toxicity. In general, the homologues with the highest number of carbons in the alkyl chain are more toxic than are those with shorter alkyl chains. Today, commercial #### Page 8 of 9 # **Bubble Burst Detergent** Issue Date: 06/04/2016 Print Date: 25/11/2018 LABS have a homologue distribution between C10 and C13 with a typical average alkyl chain length of C11.6. The widest range in the toxicity of LABS towards species belonging to the same group is found for algae.
Approximately 90% of the data found in the literature fall between 0.1 and 100 mg/l. Typical ranges of EC50 values are 1 to 100 mg/l for fresh water species and < 1 to 10 mg/l for marine species. Typical values lie between 29 and 170 mg/l A very low EC100 value of 0.025 mg/l was determined for *Gymnodium breve*. Previous studies in which *Gymnodium breve* was exposed with AES confirm that this species is highly sensitive to surfactants, and occasionally available data for *Gymnodium breve* should therefore not be used for comparison of the aquatic toxicity between various surfactants. LC50 values have been found in the range of 1 to 10 mg/l when Daphnia magna were exposed with LABS homologues between C10 and C13. The acute toxicity of LABS to Daphnia magna generally increases with increasing alkyl chain length. Typical values lie between 3 and 12 mg/l. A study with the marine crustacean Acartia tonsa indicated that a C10-13 LAS affected the survival at 0.54 mg/l (LC50) and the development rate at 0.51 mg/l (EC50) after 8 days of exposure. The 48 h-LC50 that was obtained in the same study with Acartia tonsa was 2.1 mg/l. Metabolites from biotransformation of LABS are reported to have a much lower toxicity to invertebrates compared to the toxicity of the intact surfactant. The toxicity of LABS to fish generally increases with increasing alkyl chain length, and approximately a 10-fold difference in toxicity between homologues separated by two carbon atoms has been observed. As also noted for invertebrates, fish are less susceptible to metabolites from biotransformation of LABS . LC50 values below 1 mg/l were found for C11.9 (0.71 mg/l), C13 and C14 (both 0.4 mg/l) in studies with fathead minnow. LABS sorb to sediment with partition coefficients of 50 to 1,000. The toxicity of LABS bound to sediment is relatively low compared to LABS in solution. NOEC and LOEC values were as high as 319 and 993 mg LABS/kg, respectively, for the sediment-living *Chironomus riparius*. The corresponding NOEC for LABS in solution was as low as 2.4 mg/l indicating that only a small fraction of the sorbed LABS was bioavailable. LABS dissolved in water may also cause chronic effects like reduction of the growth rate of the marine mussel *Mytilus galloprovincialis*. LABS sorbed to sediments did not have similar effects. Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products, Environment Project, 615, 2001. Torben Madsen et al: Miljoministeriet (Danish Environmental Protection Agency)Assessment Plan for the Linear Alkylbenzene (LAB) Sulfonic Acids Category in Accordance with the USEPA High Production Volume Chemical Challenge Program: The LAB Sulfonic Acids Coalition DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | | | |------------|---------------------------------------|---------------------------------------|--|--| | | No Data available for all ingredients | No Data available for all ingredients | | | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |------------|---------------------------------------| | | No Data available for all ingredients | #### Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - ► Reuse - ▶ Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - Product / Packaging disposal Note that properties of a material may change in use, and recycling or reuse may be not be not properties of a material may change in use, and recycling or reuse may be not properties of a material may change in use, and recycling or reuse may be not properties of a material may change in use, and recycling or reuse may be not properties of a material may change in use, and recycling or reuse may be not properties of a material may change in use, and recycling or reuse may be not properties of a material may change in use, and recycling or reuse may be not properties of a material may change in use, and recycling or reuse may be not properties of a material may change in use, and recycling or reuse may be not properties of a material may change in use, and recycling or reuse may be not properties of a material may change in use, and recycling or reuse may be not properties of a material may change in use, and recycling or reuse may be not properties of a material may change in use, and recycling or reuse may be not properties of a material may change in use, and recycling or reuse may be not properties of a material may change in use, and recycling or reuse may be not properties of a material may change in use, and recycling or reuse may be not properties of a material may change in use, and recycling or reuse may be not properties of a material may change in use, and the notion of notio - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. # **SECTION 14 TRANSPORT INFORMATION** #### Labels Required | - Labora Rodanioa | | |-------------------|----------------------| | Marine Pollutant | NO
Not Applicable | | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### **Bubble Burst Detergent** Issue Date: **06/04/2016**Print Date: **25/11/2018** #### **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture (LINEAR)ALKYLBENZENESULFONIC ACID, SODIUM SALTS(8046-53-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS Not Applicable SODIUM LINEAR-(C12-14)ALKYL ETHER SULFATE(68891-38-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) DIETHANOLAMINE COCOATE(8051-30-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) 1,2-BENZISOTHIAZOLINE-3-ONE(2634-33-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) #### **National Inventory Status** | National Inventory | Status | |-------------------------------|---| | Australia - AICS | N ((linear)alkylbenzenesulfonic acid, sodium salts) | | Canada - DSL | N ((linear)alkylbenzenesulfonic acid, sodium salts) | | Canada - NDSL | N (diethanolamine cocoate; sodium linear-(C12-14)alkyl ether sulfate; 1,2-benzisothiazoline-3-one; (linear)alkylbenzenesulfonic acid, sodium salts) | | China - IECSC | Υ | | Europe - EINEC / ELINCS / NLP | N ((linear)alkylbenzenesulfonic acid, sodium salts) | | Japan - ENCS | N (diethanolamine cocoate; (linear)alkylbenzenesulfonic acid, sodium salts) | | Korea - KECI | N ((linear)alkylbenzenesulfonic acid, sodium salts) | | New Zealand - NZIoC | N ((linear)alkylbenzenesulfonic acid, sodium salts) | | Philippines - PICCS | N ((linear)alkylbenzenesulfonic acid, sodium salts) | | USA - TSCA | N ((linear)alkylbenzenesulfonic acid, sodium salts) | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | #### **SECTION 16 OTHER INFORMATION** | Revision Date | 06/04/2016 | |---------------|------------| | Initial Date | 06/04/2016 | #### Other information # Ingredients with multiple cas numbers | Name | CAS No | |---|-----------------------| | sodium linear-(C12-14)alkyl ether sulfate | 68891-38-3, 9004-82-4 | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use,
frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit $_{\! \circ}$ IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index Powered by AuthorITe, from Chemwatch.