Nowchem Version No: **2.6**Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 4 Issue Date: **14/03/2018**Print Date: **14/03/2018**L.GHS.AUS.EN ### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING ### **Product Identifier** | Product name | ct name Glass Wash Machine Detergent | | |-------------------------------|--------------------------------------|--| | Synonyms | Not Available | | | Other means of identification | Not Available | | ### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Glass Wash | |--------------------------|------------| | | | ### Details of the supplier of the safety data sheet | Registered company name | Nowchem | | |-------------------------|-----------------------------------|--| | Address | 112A Albatross Road NSW Australia | | | Telephone | (02) 4421 4099 | | | Fax | (02) 4421 4932 | | | Website | www.nowchem.com.au | | | Email | sales@nowchem.com.au | | ## Emergency telephone number | Association / Organisation | Nowchem | |-----------------------------------|----------------| | Emergency telephone numbers | (02) 4421 4099 | | Other emergency telephone numbers | 0413 809 255 | ## **SECTION 2 HAZARDS IDENTIFICATION** ### Classification of the substance or mixture ${\sf HAZARDOUS\ CHEMICAL.\ NON-DANGEROUS\ GOODS.\ According\ to\ the\ WHS\ Regulations\ and\ the\ ADG\ Code.}$ ### CHEMWATCH HAZARD RATINGS | | Min | Max | |--------------|-----|-------------------------| | Flammability | 0 | | | Toxicity | 0 | 0 = Minimum | | Body Contact | 4 | 1 = Low
2 = Moderate | | Reactivity | 0 | 3 = High | | Chronic | 2 | 4 = Extreme | | Poisons Schedule Not Applicable | | |---|---| | Classification [1] Skin Corrosion/Irritation Category 1A, Serious Eye Damage Category 1, Skin Sensitizer Category 1 | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | ### Label elements Issue Date: 14/03/2018 Print Date: 14/03/2018 Hazard pictogram(s) SIGNAL WORD ### Hazard statement(s) | H314 | Causes severe skin burns and eye damage. | |------|--| | H317 | May cause an allergic skin reaction. | ### Precautionary statement(s) General | ,, | | |------|---| | P101 | If medical advice is needed, have product container or label at hand. | | P102 | Keep out of reach of children. | | P103 | Read label before use. | ### Precautionary statement(s) Prevention | P260 | Do not breathe dust/fume/gas/mist/vapours/spray. | | |------|--|--| | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | ### Precautionary statement(s) Response | P301+P330+P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. | | |--|---|--| | P303+P361+P353 | IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. | | | P305+P351+P338 | P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P310 | Immediately call a POISON CENTER or doctor/physician. | | | P363 | P363 Wash contaminated clothing before reuse. | | | P302+P352 IF ON SKIN: Wash with plenty of soap and water. | | | | P333+P313 If skin irritation or rash occurs: Get medical advice/attention. | | | | P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | | | ### Precautionary statement(s) Storage P405 Store locked up. ### Precautionary statement(s) Disposal Dispose of contents/container in accordance with local regulations. ### **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** ### **Substances** See section below for composition of Mixtures ### Mixtures | CAS No | %[weight] | Name | |------------|-----------|---| | 68937-66-6 | <10 | alcohols C6-12 ethoxylated propoxylated | | 68515-73-1 | <10 | decyl polyglucose | | 10213-79-3 | <1 | sodium metasilicate, pentahydrate | | 2634-33-5 | <1 | 1,2-benzisothiazoline-3-one | | 64665-57-2 | <1 | sodium tolyltriazole | ## **SECTION 4 FIRST AID MEASURES** ### Description of first aid measures If this product comes in contact with the eyes: If skin or hair contact occurs: ## Eye Contact - Immediately hold eyelids apart and flush the eye continuously with running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - ► Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. - Transport to hospital or doctor without delay. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. ## Skin Contact - ▶ Immediately flush body and clothes with large amounts of water, using safety shower if available. - Quickly remove all contaminated clothing, including footwear. - ▶ Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Chemwatch: 9-401618 Page 3 of 11 Issue Date: 14/03/2018 Version No: 2.6 Print Date: 14/03/2018 ### **Glass Wash Machine Detergent** | | ► Transport to hospital, or doctor. | |------------|---| | Inhalation | If furnes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | | Ingestion | For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay. | ### Indication of any immediate medical attention and special treatment needed Treat symptomatically. ### **SECTION 5 FIREFIGHTING MEASURES** ### **Extinguishing media** - ▶ There is no restriction on the type of extinguisher which may be used. - ▶ Use extinguishing media suitable for surrounding area. ### Special hazards arising from the substrate or mixture | Fire Incompatibility | None known. | | | |-------------------------|--|--|--| | Advice for firefighters | | | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | | | | Fire/Explosion Hazard | Non combustible. Not considered a significant fire risk, however containers may burn. May emit poisonous fumes. May emit corrosive fumes. | | | | HAZCHEM | Not Applicable | | | ### **SECTION 6 ACCIDENTAL RELEASE MEASURES** ## Personal precautions,
protective equipment and emergency procedures See section 8 ### **Environmental precautions** See section 12 ## Methods and material for containment and cleaning up | Minor Spills | Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. | |--------------|---| | Major Spills | Absorb or contain isothiazolinone liquid spills with sand, earth, inert material or vermiculite. The absorbent (and surface soil to a depth sufficient to remove all of the biocide) should be shovelled into a drum and treated with an 11% solution of sodium metabisulfite (Na2S2O5) or sodium bisulfite (NaHSO3), or 12% sodium sulfite (Na2SO3) and 8% hydrochloric acid (HCl). Glutathione has also been used to inactivate the isothiazolinones. Use 20 volumes of decontaminating solution for each volume of biocide, and let containers stand for at least 30 minutes to deactivate microbicide before disposal. If contamination of drains or waterways occurs, advise emergency services. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. | Personal Protective Equipment advice is contained in Section 8 of the SDS. ### **SECTION 7 HANDLING AND STORAGE** ### Precautions for safe handling Safe handling ▶ Avoid all personal contact, including inhalation. ## Page **4** of **11** Issue Date: 14/03/2018 Print Date: 14/03/2018 ### **Glass Wash Machine Detergent** - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Avoid contact with moisture. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. - ▶ DO NOT allow clothing wet with material to stay in contact with skin Other information ### Conditions for safe storage, including any incompatibilities Suitable container - ▶ Polyethylene or polypropylene container. - Packing as recommended by manufacturer. - Check all containers are clearly labelled and free from leaks. Storage incompatibility None known ### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** ### **Control parameters** OCCUPATIONAL EXPOSURE LIMITS (OEL) INGREDIENT DATA Not Available ### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |-----------------------------------|--|-----------|----------|-----------| | sodium metasilicate, pentahydrate | Sodium metasilicate pentahydrate | 6.6 mg/m3 | 73 mg/m3 | 440 mg/m3 | | sodium metasilicate, pentahydrate | Sodium silicate; (Sodium metasilicate) | 3.8 mg/m3 | 42 mg/m3 | 250 mg/m3 | | sodium tolyltriazole | Sodium tolyltriazole; (1H-Benzotriazole, 4(or 5)-methyl-, sodium salt) | 1.9 mg/m3 | 21 mg/m3 | 130 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |--|---------------|---------------| | ingredient | | NOVISCUIDEIT | | alcohols C6-12 ethoxylated
propoxylated | Not Available | Not Available | | decyl polyglucose | Not Available | Not Available | | sodium metasilicate, pentahydrate | Not Available | Not Available | | 1,2-benzisothiazoline-3-one | Not Available | Not Available | | sodium tolyltriazole | Not Available | Not Available | ### MATERIAL DATA Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can: - ▶ cause inflammation - ▶ cause increased susceptibility to other irritants and infectious agents - lead to permanent injury or dysfunction - permit greater absorption of hazardous substances and - ► acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure. 1,2-Benzisothiazoline-3-one (BIT) produces sensitising effects and causes skin irritation at concentrations of 0.05%. Solutions containing the substance should contain levels considerably lower than 0.05%. CEL TWA: 0.1 mg/m3; STEL 0.3 mg/m3 total isothiazolinones (Rohm and Haas) (CEL = Chemwatch Exposure Limit) ### Exposure controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. # Appropriate engineering controls Version No: 2.6 ### **Glass Wash Machine Detergent** Issue Date: 14/03/2018 Print Date: 14/03/2018 ### Personal protection # Eye and face protection - ▶ Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure - Chemical goggles whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted. - Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection. - Alternatively a gas mask may replace splash goggles and face shields. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly, [CDC NIOSH Current Intelligence Bulletin 59],
[AS/NZS 1336 or national equivalent] ### Skin protection ### See Hand protection below - ▶ Elbow length PVC gloves - When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots ### NOTE: - ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact. - chemical resistance of glove material. - glove thickness and - dexterity ### Hands/feet protection - Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. - ▶ Butyl rubber gloves - ▶ Nitrile rubber gloves ### **Body protection** ## See Other protection below ## Other protection - ▶ Overalls - ► P.V.C. apron. ▶ Barrier cream. - Skin cleansing cream. - Eye wash unit - Thermal hazards Not Available ### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** ### Information on basic physical and chemical properties | Appearance | Clear Blue/Green Liquid | | | |-------------------------------------|-------------------------|---|---------------| | Physical state | Liquid | Relative density (Water = 1) | 0.99 - 1.01 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | 11 - 12 | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | Chemwatch: 9-401618 Page 6 of 11 Issue Date: 14/03/2018 Version No: 2.6 Print Date: 14/03/2018 ## **Glass Wash Machine Detergent** | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Available | |--|---------------|----------------------------------|---------------| | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Non Flammable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | ## SECTION 10 STABILITY AND REACTIVITY | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ## **SECTION 11 TOXICOLOGICAL INFORMATION** | | Evidence shows or produced avanciance products that the metalial produces initiation of the propiotical avanciance produces of individuals | |--------------|--| | Inhaled | Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. The material has NOT been classified by EC Directives or other classification systems as 'harmful by inhalation'. This is because of the lack of corroborating animal or human evidence. In the absence of such evidence, care should be taken nevertheless to ensure exposure is kept to a minimum and that suitable control measures be used, in an occupational setting to control vapours, fumes and aerosols. | | Ingestion | The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion. The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following
ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. Isothiazolinones are moderately to highly toxic by oral administration. The major signs of toxicity were severe gastric irritation, lethargy, and ataxia | | Skin Contact | The material can produce severe chemical burns following direct contact with the skin. Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Solutions of 0.5% strength 1,2-benzisothiazoline-3-one (BIT) are irritating to the skin. Allergenic effects also begin at 0.05% and have been confirmed in a series of case and patch test studies. When the substance was applied to human volunteers under an occlusive patch the maximum tolerated doses was 0.05%. Five hours after application of 0.1% (1000 ppm) one person showed moderate erythema with papule development which was interpreted as a reaction to the sticking plaster; in four persons there was mild reddening of the skin. The reaction had ameliorated in several persons after 72 hours. A second application produced various severe dermal reactions (erythema and papules) in 8 persons. A third application to several of the group produced erythema. Provocation tests with BIT showed the material to be sensitising. Of 20 metal workers with dermatitis, 4 were shown to have been sensitised to BIT in cutting oils. Cases of contact eczema in workers producing polyacrylate emulsions for paints and wax polish, in which BIT was the preservative, have been described. Epicutaneous challenge tests to BIT were positive. Similar findings have been described in the paper-manufacturing industry, in the rubber industry, in the control laboratory of a chemical plant and among workers producing ceramic moulds in which BIT was added to the mould oil Aqueous solutions of isothiazolinones may be irritating or even corrosive depending on concentration. Solutions containing more than 0.5% (5000 ppm active substance) may produce severe irritation of human skin whilst solutions containing more than 100 ppm may irritate the skin. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cu | | Eye | The material can produce severe chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Solutions containing isothiazolinones may produce corrosion of the mucous membranes and cornea. Instillation of 0.1 ml of an aqueous solution containing 560 ppm isothiazolinone into rabbit eye did not produce irritation whereas concentrations, typically around 3% and 5.5 %, were severely irritating or corrosive to the eye Symptoms included clouding of the cornea, chemosis and swelling of the eyelids. | | Chronic | Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. | Chemwatch: 9-401618 Page 7 of 11 Issue Date: 14/03/2018 Version No: 2.6 ### **Glass Wash Machine Detergent** Print Date: 14/03/2018 In a teratogenic study in rats concentrations of up to 40 mg/kg 1.2-benzisothiazoline-3-one (BIT) were neither embryotoxic nor teratogenic. The material is not mutagenic. In a 2-year carcinogenicity study with rats, BIT did not produce excess tumours. The results derived from this test are questionable because no dose series was administered and because there were too few animals. A 90-day study with beagle dogs receiving oral doses showed reduced food consumption and body weight gain as well as mild anaemia, increases in the weights of liver and in male animals, brain and spleen weights. The no-observed-effect-level (NOEL) was given as 165 mg/kg (ie 0.5 BIT in the diet). A 90-day study with rats receiving dietary BIT showed reduced liver and pituitary weights in males. The NOEL was less than 0.1 %. The isothiazolinones are known contact sensitisers. Data are presented which demonstrate that, in comparison with the chlorinated and dichlorinated compounds which share immunological cross-reactivity, the non-chlorinated isothiazolinones have a lower potential for sensitization and no documented immunological cross-reaction with the chlorinated isothiazolinones. The risk of sensitization depends on how contact with the product occurs. The risk is greater when the skin barrier has been damaged and smaller when the skin is healthy. Dermatological studies have demonstrated that mixed isothiazolinone concentrations below 20 ppm may cause sensitisation and that allergic reactions can be provoked in sensitized persons even with concentrations in the range of 7-15 ppm active isothiazolinones. The isothiazolinones are a group of heterocyclic sulfur-containing compounds. In general all are electrophilic molecules containing an activated N-S bond that enables them with nucleophilic cell entities, thus exerting biocidal activity. A vinyl activated chlorine atom makes allows to molecule to exert greater antimicrobial efficiency but at the same time produces a greater potential for sensitisation. Several conclusions relating to the sensitising characteristics of the isothiazolinones may therefore be drawn*: - ► The strongest sensitisers are the chlorinated isothiazolinones. - ► There are known immunological cross-reactions between at least 2 different chlorinated isothiazolinones. - ► There appears to be no immunological cross reaction between non-chlorinated isothiazolinones and chlorinated isothiazolinones. - Although classified as sensitisers, the nonchlorinated isothiazolinones are considerably less potent sensitisers than are the chlorinated isothiazolinones - ▶ By avoiding the use of chlorinated isothiazolinones, the potential to induce sensitisation is greatly reduced. - ▶ Despite a significant percentage of the population having been previously sensitised to chlorinated and non-chlorinated species, it is likely that careful and judicious use of non-chlorinated isothiazolinones will result in reduced risk of allergic reactions in those persons. - Although presently available data promise that several non-chlorinated isothiazolinones will offer effective antimicrobial protection in industrial and personal care products, it is only with the passage of time that proof of their safety in use or otherwise will become available * B.R. Alexander: Contact Dermatitis 2002, 46, pp 191-196 Although there have been conflicting reports in the literature, it has been reported by several investigators that isothiazolinones are mutagenic in Salmonella typhimurium strains (Ames test). Negative results were obtained in studies of the DNA-damaging potential of mixed isothiazolinones (Kathon) in mammalian cells in vitro and of cytogenetic effects and DNA-binding in vivo. The addition of rat liver S-9 (metabolic activation) reduced toxicity but did not eliminate mutagenicity. These compounds bind to the proteins in the S-9. At higher concentrations of Kathon the increase in mutagenicity may be due to an excess of unbound active compounds. A study of cutaneous application of Kathon CG in 30 months, three times per week at a concentration of 400 ppm (0.04%) a.i. had no local or systemic tumourigenic effect in male mice. No dermal or systemic carcinogenic potential was observed. Reproduction and teratogenicity studies with rats, given isothiazolinone doses of 1.4-14 mg/kg/day orally from day 6 to day 15 of gestation, showed no treatment related effects in either the dams or in the foetuses | Glass Wash Machine Detergent | TOXICITY Not Available | IRRITATION Not Available | | | |---|---|---|------------|---------------------------| | alcohols C6-12 ethoxylated propoxylated | TOXICITY Inhalation (rat) LC50: >50 mg/l/1h** ^[2] Oral (rat) LD50: 2500 mg/kg ^[2] | | | EITATION :: SEVERE * | | decyl polyglucose | TOXICITY Dermal (rabbit) LD50: >2000 mg/kg ^[2] Dermal (rabbit) LD50: >2000 mg/kg ^[1] Oral (rat) LD50: >2000 mg/kg ^[1] Oral (rat) LD50: >5000 mg/kg ^[2] | | | IRRITATION Not Available | | sodium metasilicate,
pentahydrate | TOXICITY Oral (rat) LD50: 847 mg/kg ^[2] | IRRITATION Skin (human): 250 mg/24l Skin (rabbit): 250 mg/24h | | | | 1,2-benzisothiazoline-3-one | | | | FATION vailable | | | | | IRRITATION | | | sodium tolyltriazole | TOXICITY | IRRITATION | |----------------------|--
--------------------------| | | Dermal (rabbit) LD50: >2000 mg/kg ^[2] | Eye (rabbit): Corrosive | | | Inhalation (rat) LC50: >13.125 mg/l/3h] ^[2] | Skin (rabbit): Corrosive | | | Oral (rat) LD50: 675 mg/kg ^[2] | | Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances ALCOHOLS C6-12 sc No significant acute toxicological data identified in literature search. Chemwatch: 9-401618 Page 8 of 11 Issue Date: 14/03/2018 Version No: 2.6 Print Date: 14/03/2018 ### **Glass Wash Machine Detergent** Human beings have regular contact with alcohol ethoxylates through a variety of industrial and consumer products such as soaps, detergents, and other cleaning products. Exposure to these chemicals can occur through ingestion, inhalation, or contact with the skin or eyes. Studies of acute toxicity show that volumes well above a reasonable intake level would have to occur to produce any toxic response. Moreover, no fatal case of poisoning with alcohol ethoxylates has ever been reported. Multiple studies investigating the acute toxicity of alcohol ethoxylates have shown that the use of these compounds is of Clinical animal studies indicate these chemicals may produce gastrointestinal irritation such as ulcerations of the stomach, pilo-erection, diarrhea, and lethargy. Similarly, slight to severe irritation of the skin or eye was generated when undiluted alcohol ethoxylates were applied to the skin and eyes of rabbits and rats. The chemical shows no indication of being a genotoxin, carcinogen, or mutagen (HERA 2007), No information was available on levels at which these effects might occur, though toxicity is thought to be substantially lower than that of nonylphenol ethoxylates. Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air. Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture . On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing. Alcohol ethoxylates are according to CESIO (2000) classified as Irritant or Harmful depending on the number of EO-units: EO < 5 gives Irritant (Xi) with R38 (Irritating to skin) and R41 (Risk of serious damage to eyes) EO > 5-15 gives Harmful (Xn) with R22 (Harmful if swallowed) - R38/41 EO > 15-20 gives Harmful (Xn) with R22-41 low concern in terms of oral and dermal toxicity. >20 EO is not classified (CESIO 2000) Oxo-AE, C13 EO10 and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin). AE are not included in Annex 1 of the list of dangerous substances of the Council Directive 67/548/EEC ### **ETHOXYLATED** PROPOXYLATED In general, alcohol ethoxylates (AE) are readily absorbed through the skin of guinea pigs and rats and through the gastrointestinal mucosa of rats. AE are quickly eliminated from the body through the urine, faeces, and expired air (CO2). Orally dosed AE was absorbed rapidly and extensively in rats, and more than 75% of the dose was absorbed. When applied to the skin of humans, the doses were absorbed slowly and incompletely (50% absorbed in 72 hours). Half of the absorbed surfactant was excreted promptly in the urine and smaller amounts of AE appeared in the faeces and expired air (CO2)). The metabolism of C12 AE yields PEG, carboxylic acids, and CO2 as metabolites. The LD50 values after oral administration to rats range from about 1-15 g/kg body weight indicating a low to moderate acute toxicity. The ability of nonionic surfactants to cause a swelling of the stratum corneum of guinea pig skin has been studied. The swelling mechanism of the skin involves a combination of ionic binding of the hydrophilic group as well as hydrophobic interactions of the alkyl chain with the substrate. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. A substantial amount of toxicological data and information in vivo and in vitro demonstrates that there is no evidence for alcohol ethoxylates (AEs) being genotoxic, mutagenic or carcinogenic. No adverse reproductive or developmental effects were observed. The majority of available toxicity studies revealed NOAELs in excess of 100 mg/kg bw/d but the lowest NOAEL for an individual AE was established to be 50 mg/kg bw/day. This value was subsequently considered as a conservative, representative value in the risk assessment of AE. The effects were restricted to changes in organ weights with no histopathological organ changes with the exception of liver hypertrophy (indicative of an adaptive response to metabolism rather than a toxic effect). It is noteworthy that there was practically no difference in the NOAEL in oral studies of 90-day or 2 years of duration in rats. A comparison of the aggregate consumer exposure and the systemic NOAEL (taking into account an oral absorption value of 75%) results in a Margin of Exposure of 5,800. Taking into account the conservatism in the exposure assessment and the assigned systemic NOAEL, this margin of exposure is considered more than adequate to account for the inherent uncertainty and variability of the hazard database and inter and intraspecies extrapolations AEs are not contact sensitisers. Neat AE are irritating to eyes and skin. The irritation potential of aqueous solutions of AEs depends on concentrations. Local dermal effects due to direct or indirect skin contact in certain use scenarios where the products are diluted are not of concern as AEs are not expected to be irritating to the skin at in-use concentrations. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne AE generated as a consequence of spray cleaner aerosols or laundry powder detergent dust. In summary, the human health risk assessment has demonstrated that the use of AE in household laundry and cleaning detergents is safe and does not cause concern with regard to consumer use. The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis for 85% aqueous solution alcohols C7-10 ethoxylated, propoxylated: No known or reported effects on reproductive function or foetal development. No known or reported to be mutagenic. ### SODIUM METASILICATE. PENTAHYDRATE The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. sodium metasilicate anhydrous: The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibodymediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Acute toxicity data show that 1,2-benzisothiazoline-3-one (BIT) is moderately toxic by the oral and dermal routes but that this chemical is a severe eye irritant. Irritation to the skin from acute data show only mild skin irritation, but repeated dermal application indicated a more significant skin irritation response The neurotoxicity observed in the rat acute oral toxicity study (piloerection and upward curvature of the spine at 300 mg/kg and above; decreased activity, 1,2-BENZISOTHIAZOLINE-3-ONE prostration, decreased abdominal muscle tone, reduced righting reflex, and decreased rate and depth of breathing at 900 mg/kg) and the acute dermal toxicity study (upward curvature of the spine was observed in increased incidence, but this was absent after day 5 post-dose at a dose of 2000 mg/kg) were felt to be at exposures in excess of those expected from the use pattern of this pesticide and that such effects would not be observed at estimated exposure > Subchronic oral
toxicity studies showed systemic effects after repeated oral administration including decreased body weight, increased incidence of forestomach hyperplasia, and non-glandular stomach lesions in rats. In dogs, the effects occurred at lower doses than in rats, and included alterations in blood chemistry (decreased plasma albumin, total protein, and alanine aminotransferase) and increased absolute liver weight. > Developmental toxicity studies were conducted in rats with maternal effects including decreased body weight gain, decreased food consumption, and clinical toxicity signs (audible breathing, haircoat staining of the anogenital region, dry brown material around the nasal area) as well as increased mortality. Developmental effects consisted of increases in skeletal abnormalities (extra sites of ossification of skull bones, unossified sternebrae) but not external or visceral abnormalities Reproductive toxicity: In a two-generation reproduction study, parental toxicity was observed at 500 ppm and was characterized by lesions in the Chemwatch: 9-401618 Version No: 2.6 ## **Glass Wash Machine Detergent** Page 9 of 11 Issue Date: 14/03/2018 Print Date: 14/03/2018 stomach. In pups, toxic effects were reported at 1000 ppm and consisted of preputial separation in males and impaired growth and survival in both sexes. The reproduction study did not show evidence of increased susceptibility of offspring. The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is SODIUM TOLYLTRIAZOLE often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. for 50% aqueous solution: * * Bayer Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known ALCOHOLS C6-12 as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the **ETHOXYLATED** diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms PROPOXYLATED & SODIUM within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe METASILICATE, bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been PENTAHYDRATE & SODIUM included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the TOLYLTRIAZOLE concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. The material may produce respiratory tract irritation. Symptoms of pulmonary irritation may include coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and a burning sensation. ALCOHOLS C6-12 Unlike most organs, the lung can respond to a chemical insult or a chemical agent, by first removing or neutralising the irritant and then repairing the **ETHOXYLATED** damage (inflammation of the lungs may be a consequence). PROPOXYLATED & SODIUM METASILICATE, The repair process (which initially developed to protect mammalian lungs from foreign matter and antigens) may, however, cause further damage to the PENTAHYDRATE lungs (fibrosis for example) when activated by hazardous chemicals. Often, this results in an impairment of gas exchange, the primary function of the lungs. Therefore prolonged exposure to respiratory irritants may cause sustained breathing difficulties. ALCOHOLS C6-12 **ETHOXYLATED** The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is PROPOXYLATED & SODIUM often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) METASILICATE. and intracellular oedema of the epidermis. PENTAHYDRATE 0 0 **Acute Toxicity** Carcinogenicity 0 Skin Irritation/Corrosion Reproductivity 0 Serious Eye Damage/Irritation STOT - Single Exposure Respiratory or Skin STOT - Repeated Exposure 0 • sensitisation 0 0 Leaend: Aspiration Hazard 🗶 – Data available but does not fill the criteria for classification - Data available to make classification Not Available to make classification ### **SECTION 12 ECOLOGICAL INFORMATION** Mutagenicity | | ENDPOINT | TEST DURATION (HR) | SPECI | ES | VALUE | E | SOURCE | |-----------------------------|---------------|--------------------|---------|-----------|---------------|----------|---------------| | s Wash Machine Detergent | Not Available | Not Available | Not Ava | ailable | Not Available | | Not Available | | | | | | | | | | | alcohols C6-12 ethoxylated | ENDPOINT | TEST DURATION (HR) | SPECIES | | VALUE | Ē | SOURCE | | propoxylated | Not Available | Not Available | Not Ava | ailable | Not Available | | Not Available | | | ENDPOINT | TEST DURATION (HR) | | SPECIES | | VALUE | SOURCE | | decyl polyglucose | EC50 | 48 | | Crustacea | | 7mg/L | 2 | | | | | | | | | | | sodium metasilicate, | ENDPOINT | TEST DURATION (HR) | | SPECIES | , | VALUE | SOURCE | | pentahydrate | LC50 | 96 | | Fish | | 180mg/L | 1 | | | ENDPOINT | TEST DURATION (HR) | | SPECIES | VA | LUE | SOURCE | | 1,2-benzisothiazoline-3-one | LC50 | 96 | 1 | Fish | 1.6 | 6mg/L | 4 | | | EC50 | 48 | (| Crustacea | 0.0 | 062mg/L | 4 | | | | | | | 1 | _ | | | sodium tolyltriazole | ENDPOINT | TEST DURATION (HR) | SPECI | | VALUE | | SOURCE | | - | Not Available | Not Available | Not Ava | ailable | Not Av | ailable | Not Available | (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Issue Date: **14/03/2018**Print Date: **14/03/2018** The isothiazolinones are very toxic to marine organisms (fish, Daphnia magna and algae) The high water solubility and low log Kow values of several chlorinated and non-chlorinated indicate a low potential for bioaccumulation. Studies of 5-chloro-2-methyl-4-isothiazolin-3-one (CMI) in bluegill sunfish (Lepornis machrochirus) show BCF values of 102, 114 and 67 at nominal concentrations of 0.02, 0.12 and 0.8 mg/l. The BCF for 2-methyl-4-isothiazolin-3-one (MI) was determined at 2.3 at a nominal concentration of 0.12 mg/l Primary biodegradation of MI and CMI occurred with half-lives of less than 24 hours in aerobic and anoxic sediments, and within a period of less than one week the parent compounds were depleted to very low levels that could not be clearly distinguished from analytical artifacts. The ultimate aerobic biodegradability of both MI and CMI attained levels of > 55% within 29 days. Furthermore, the proposed metabolites of MI and CMI are considered to have a low aquatic toxicity on the basis of QSAR estimates and the measured toxicity of the structurally related N-(n-octyl) malonamic acid. DO NOT discharge into sewer or waterways. ### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-------------------|-------------------------|------------------| | decyl polyglucose | LOW | LOW | ### Bioaccumulative potential | • | | |-------------------|----------------------| | Ingredient | Bioaccumulation | | decyl polyglucose | LOW (LogKOW = 1.916) | ### Mobility in soil | Ingredient | Mobility | |-------------------|----------------| | decyl polyglucose | LOW (KOC = 10) | ### **SECTION 13 DISPOSAL CONSIDERATIONS** ### Waste treatment methods Product / Packaging disposal - ▶ Containers may still present a chemical hazard/ danger when empty. - ► Return to supplier for reuse/ recycling if possible. ### Otherwise: - ▶ If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - Reuse - ReuseRecycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - ► Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- ▶ Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ### **SECTION 14 TRANSPORT INFORMATION** ### **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ### **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture \parallel ALCOHOLS C6-12 ETHOXYLATED PROPOXYLATED(68937-66-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) DECYL POLYGLUCOSE(68515-73-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) ### SODIUM METASILICATE, PENTAHYDRATE(10213-79-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2) Australia Standard for the Uniform Scheduling of Medicines and Foisons (SUSMP) - Appendix 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 ### 1,2-BENZISOTHIAZOLINE-3-ONE(2634-33-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) ### SODIUM TOLYLTRIAZOLE(64665-57-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) | National Inventory | Status | |-------------------------------|---| | Australia - AICS | Υ | | Canada - DSL | Υ | | Canada - NDSL | N (sodium metasilicate, pentahydrate; sodium tolyltriazole; 1,2-benzisothiazoline-3-one; decyl polyglucose; alcohols C6-12 ethoxylated propoxylated) | | China - IECSC | Υ | | Europe - EINEC / ELINCS / NLP | N (alcohols C6-12 ethoxylated propoxylated) | | Japan - ENCS | N (sodium tolyltriazole; decyl polyglucose; alcohols C6-12 ethoxylated propoxylated) | | Korea - KECI | Υ | | New Zealand - NZIoC | Y | | Philippines - PICCS | Υ | | USA - TSCA | Y | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | ### **SECTION 16 OTHER INFORMATION** ### Other information ### Ingredients with multiple cas numbers | Name | CAS No | |-------------------|-------------------------------------| | decyl polyglucose | 58846-77-8, 68515-73-1, 110615-47-9 | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ### **Definitions and abbreviations** ${\sf PC-TWA: Permissible \ Concentration-Time \ Weighted \ Average}$ PC - STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit $_{\circ}$ IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index Powered by AuthorITe, from Chemwatch.