D-Limonene Nowchem Version No: 1.7 Safety Data Sheet according to WHS and ADG requirements #### Chemwatch Hazard Alert Code: 2 Issue Date:19/04/2016 Revision Date: 10/02/2021 L.GHS.AUS.EN # SECTION 1 Identification of the substance / mixture and of the company / undertaking | Product | Identifier | |---------|------------| | i roddot idominio | | |-------------------------------|------------------------------| | Product name | D-Limonene | | Chemical Name | d-limonene | | Synonyms | Not Available | | Proper shipping name | TERPENE HYDROCARBONS, N.O.S. | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against # Details of the supplier of the safety data sheet | Registered company name | Nowchem | |-------------------------|-----------------------------------| | Address | 112A Albatross Road NSW Australia | | Telephone | (02) 4421 4099 | | Fax | (02) 4421 4932 | | Website | www.nowchem.com.au | | Email | sales@nowchem.com.au | #### **Emergency telephone number** | Association / Organisation | Nowchem | |-----------------------------------|----------------| | Emergency telephone numbers | (02) 4421 4099 | | Other emergency telephone numbers | 0413 809 255 | # **SECTION 2 Hazards identification** #### Classification of the substance or mixture HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. # ChemWatch Hazard Ratings | | | Min | Max | | |--------------|---|-----|-----|-------------------------| | Flammability | 2 | | | | | Toxicity | 0 | | | 0 = Minimum | | Body Contact | 2 | | 1 | 1 = Low | | Reactivity | 1 | | | 2 = Moderate | | Chronic | 2 | | | 3 = High
4 = Extreme | | Poisons Schedule | Not Applicable | |--------------------|---| | Classification [1] | Flammable Liquid Category 3, Skin Corrosion/Irritation Category 2, Skin Sensitizer Category 1 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | #### Label elements Version No: 1.7 Page 2 of 12 **D-Limonene** Issue Date:19/04/2016 Revision Date: 10/02/2021 Signal word Warning #### Hazard statement(s) | H226 | Flammable liquid and vapour. | |------|--------------------------------------| | H315 | Causes skin irritation. | | H317 | May cause an allergic skin reaction. | #### Precautionary statement(s) General | P101 | If medical advice is needed, have product container or label at hand. | |------|---| | P102 | Keep out of reach of children. | | P103 | Read carefully and follow all instructions. | #### Precautionary statement(s) Prevention | P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. P233 Keep container tightly closed. P280 Wear protective gloves/protective clothing/eye protection/face protection/hearing protection/ P240 Ground and bond container and receiving equipment. P241 Use explosion-proof [electrical/ventilating/lighting/] equipment. P242 Use non-sparking tools. P243 Take action to prevent static discharges. P261 Avoid breathing mist/vapours/spray. P272 Contaminated work clothing should not be allowed out of the workplace. | | | |--|------|--| | P280 Wear protective gloves/protective clothing/eye protection/face protection/hearing protection/ P240 Ground and bond container and receiving equipment. P241 Use explosion-proof [electrical/ventilating/lighting/] equipment. P242 Use non-sparking tools. P243 Take action to prevent static discharges. P261 Avoid breathing mist/vapours/spray. | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | | P240 Ground and bond container and receiving equipment. P241 Use explosion-proof [electrical/ventilating/lighting/] equipment. P242 Use non-sparking tools. P243 Take action to prevent static discharges. P261 Avoid breathing mist/vapours/spray. | P233 | Keep container tightly closed. | | P241 Use explosion-proof [electrical/ventilating/lighting/] equipment. P242 Use non-sparking tools. P243 Take action to prevent static discharges. P261 Avoid breathing mist/vapours/spray. | P280 | Wear protective gloves/protective clothing/eye protection/face protection/hearing protection/ | | P242 Use non-sparking tools. P243 Take action to prevent static discharges. P261 Avoid breathing mist/vapours/spray. | P240 | Ground and bond container and receiving equipment. | | P243 Take action to prevent static discharges. P261 Avoid breathing mist/vapours/spray. | P241 | Use explosion-proof [electrical/ventilating/lighting/] equipment. | | P261 Avoid breathing mist/vapours/spray. | P242 | Use non-sparking tools. | | | P243 | Take action to prevent static discharges. | | P272 Contaminated work clothing should not be allowed out of the workplace. | P261 | Avoid breathing mist/vapours/spray. | | | P272 | Contaminated work clothing should not be allowed out of the workplace. | ### Precautionary statement(s) Response | P321 | Specific treatment (see on this label). | | |----------------|--|--| | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam to extinguish. | | | P302+P352 | IF ON SKIN: Wash with plenty of water and soap. | | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | #### Precautionary statement(s) Storage P403+P235 Store in a well-ventilated place. Keep cool. # Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. # **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures ## Mixtures | CAS No | %[weight] | Name | |-----------|-----------|-------------------| | 5989-27-5 | 100 | <u>d-limonene</u> | #### **SECTION 4 First aid measures** #### Description of first aid measures If this product comes in contact with eyes: - Eye Contact Wash out immediately with water. - If irritation continues, seek medical attention. - ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. #### Skin Contact - If skin contact occurs: Immediately remove all contaminated clothing, including footwear. - Flush skin and hair with running water (and soap if available). - ► Seek medical attention in event of irritation. Version No: 1.7 Page 3 of 12 #### **D-Limonene** Issue Date:19/04/2016 Revision Date: 10/02/2021 | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | |------------|---| | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. | #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. #### **SECTION 5 Firefighting measures** #### **Extinguishing media** #### Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters | Fire Fighting | | |-----------------------|---| | Fire/Explosion Hazard | Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon monoxide (CO) carbon dioxide (CO2)
other pyrolysis products typical of burning organic material. WARNING: Long standing in contact with air and light may result in the formation of potentially explosive peroxides. | | HAZCHEM | 3Y | # **SECTION 6 Accidental release measures** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 # Methods and material for containment and cleaning up | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container. | |--------------|---| | | CARE: Absorbent materials wetted with occluded oil must be moistened with water as | Major Spills Safe handling **CARE**: Absorbent materials wetted with occluded oil must be moistened with water as they may auto-oxidize, become self heating and ignite. Some oils slowly oxidise when spread in a film and oil on cloths, mops, absorbents may autoxidise and generate heat, smoulder, ignite and burn. In the workplace oily rags should be collected and immersed in water. Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 Handling and storage** #### Precautions for safe handling - ▶ Containers, even those that have been emptied, may contain explosive vapours. - ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of overexposure occurs. - Use in a well-ventilated area. - ▶ Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - Avoid generation of static electricity. - ► DO NOT use plastic buckets. - ► Earth all lines and equipment. - Use spark-free tools when handling. - Avoid contact with incompatible materials. - When handling, **DO NOT** eat, drink or smoke. - ▶ Keep containers securely sealed when not in use. Version No: 1.7 Page 4 of 12 #### **D-Limonene** Issue Date:19/04/2016 Revision Date: 10/02/2021 - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - ▶ DO NOT allow clothing wet with material to stay in contact with skin - Store in original containers in approved flammable liquid storage area. - Store away from incompatible materials in a cool, dry, well-ventilated area. - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - No smoking, naked lights, heat or ignition sources. - Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access. - Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances. - Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. - Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors. - Keep adsorbents for leaks and spills readily available. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. #### In addition, for tank storages (where appropriate): - ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - Storage tanks should be above ground and diked to hold entire contents. #### Conditions for safe storage, including any incompatibilities - ▶ Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - Check that containers are clearly labelled and free from leaks - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - For materials with a viscosity of at least 2680 cSt. (23 deg. C) #### Suitable container Other information - For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. #### d-Limonene: - ▶ forms unstable peroxides in storage, unless inhibited; may polymerise - reacts with strong oxidisers and may explode or combust - is incompatible with strong acids, including acidic clays, peroxides, halogens, vinyl chloride and iodine pentafluoride - ▶ flow or agitation may generate electrostatic charges due to low conductivity - The various oxides of nitrogen and peroxyacids may be dangerously reactive in the presence of alkenes. BRETHERICK L.: Handbook of Reactive Chemical Hazards - Avoid reaction with strong Lewis or mineral acids. - Reaction with halogens requires carefully controlled conditions. - Free radical initiators should be avoided. • The interaction of alkenes and alkynes with nitrogen oxides and oxygen may produce explosive addition products; these may form at very low temperatures and explode on heating to higher temperatures (the addition products from 1,3-butadiene and cyclopentadiene form rapidly at -150 C and ignite or explode on warming to -35 to -15 C). These derivatives ('pseudo- nitrosites') were formerly used to characterise terpene hydrocarbons. Exposure to air must be kept to a minimum so as to limit the build-up of peroxides which will concentrate in bottoms if the product is distilled. The product must not be distilled to dryness if the peroxide concentration is substantially above 10 ppm (as active oxygen) since explosive decomposition may occur. Distillate must be immediately inhibited to prevent peroxide formation. The effectiveness of the antioxidant is limited once the peroxide levels exceed 10 ppm as active oxygen. Addition of more inhibitor at this point is generally ineffective. Prior to distillation it is recommended that the product should be washed with aqueous ferrous ammonium sulfate to destroy peroxides; the washed product should be immediately re-inhibited. # Storage incompatibility - A range of exothermic decomposition energies for double bonds is given as 40-90 kJ/mol. The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment. For example, in 'open vessel processes' (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in 'closed vessel processes' (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g. BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition - The reaction of ozone with alkenes is believed to proceed via the formation of a vibrationally excited Primary Ozonide (POZ) which falls apart to give a vibrationally excited Criegee Intermediate (CI) The CI can decompose to give OH radicals, or be stabilised. This may be of relevance in atmospheric chemistry. - · Violent explosions at low temperatures in ammonia synthesis gas units have been traced to the addition products of dienes and nitrogen dioxide #### HAZARD - Although anti-oxidants may be present, in the original formulation, these may deplete over time as they come into contact with air. - Rags wet / soaked with unsaturated hydrocarbons / drying oils may auto-oxidise; generate heat and, in-time, smoulder and ignite. This is especially the case where oil-soaked materials are folded, bunched, compressed, or piled together this allows the heat to accumulate or even accelerate the reaction - Oily cleaning rags should be collected regularly and immersed in water, or spread to dry in safe-place away from direct sunlight.or stored, immersed, in solvents in suitably closed containers. - ► Avoid reaction with
oxidising agents Version No: 1.7 Page 5 of 12 **D-Limonene** Issue Date:19/04/2016 Revision Date: 10/02/2021 #### **SECTION 8 Exposure controls / personal protection** #### Control parameters Occupational Exposure Limits (OEL) #### INGREDIENT DATA Not Available #### **Emergency Limits** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |------------|---------------|--------|--------------|---------| | d-limonene | Limonene, d- | 15 ppm | 67 ppm | 170 ppm | | Ingredient | Original IDLH | Re | evised IDLH | | | d-limonene | Not Available | No | ot Available | | #### Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | | |------------|--|----------------------------------|--| | d-limonene | E | ≤ 0.1 ppm | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | #### MATERIAL DATA for d-Limonene: CEL TWA: 30 ppm, 165.6 mg/m3 (compare WEEL-TWA*) (CEL = Chemwatch Exposure Limit) A Workplace Environmental Exposure Level* has been established by AIHA (American Industrial Hygiene Association) who have produced the following rationale: d-Limonene is not acutely toxic. In its pure form it is not a sensitiser but is irritating to the skin. Although there is clear evidence of carcinogenicity in male rats, the effect has been attributed to an alpha-2u-globin (a2u-G) renal toxicity which is both species and gender specific. Humans do not synthesise a2u-G, and metabolism studies indicate that 75% to 95% of d-limonene is excreted in 2-3 days with different metabolites identified between humans and rats. In a 2-year study, liver effects were noted in male mice at 500 mg/kg and reduced survival was noted in female rats at 600 mg/kg. The no observable effect levels (NOELs) were 250 and 300 mg/kg, respectively. A WEEL of 30 ppm is recommended to protect against these effects. #### **Exposure controls** Care: Atmospheres in bulk storages and even apparently empty tanks may be hazardous by oxygen depletion. Atmosphere must be checked before entry. Requirements of State Authorities concerning conditions for tank entry must be met. Particularly with regard to training of crews for tank entry; work permits; sampling of atmosphere; provision of rescue harness and protective gear as needed Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can Engineering controls are used to remove a nazard or place a barrier between the worker and the nazard. Well-designed engineering controls cabe highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. #### Personal protection Appropriate engineering controls - Safety glasses with side shields. - Chemical goggles. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] Eve and face protection #### Skin protection See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber #### NOTE: The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. #### Hands/feet protection The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: frequency and duration of contact, Version No: 1.7 Page 6 of 12 **D-Limonene** Issue Date:19/04/2016 Revision Date: 10/02/2021 - ▶ chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - ▶ Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. #### Body protection Other protection #### See Other protection below #### ▶ Overalls - ▶ PVC protective suit may be required if exposure severe - Eyewash unit. - Ensure there is ready access to a safety shower. # Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. #### **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties | Appearance | Clear Colourless Liquid | | | |--|-------------------------|---|---------------| | Physical state | Liquid | Relative density (Water = 1) | 0.83 - 0.85 | | Odour | Citrus | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Available | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Flammable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | # **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------
--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 Toxicological information** Version No: 1.7 Page 7 of 12 **D-Limonene** Issue Date:19/04/2016 Revision Date: 10/02/2021 # Inhaled The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. #### Ingestion The material has **NOT** been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. ### Skin Contact Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. #### Eye Although the liquid is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn). Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. In the presence of air, a number of common flavour and fragrance chemicals can form peroxides surprisingly fast. Antioxidants can in most cases minimise the oxidation. Fragrance terpenes are generally easily oxidised in air. Non-oxidised limonene, linalool and caryophyllene turned out to be very weak sensitizers, however after oxidation limonene hydroperoxide and linalool hydroperoxide are strong sensitizers. Of the patients tested 2.6% showed positive reaction to oxidised limonene, 1.3% to oxidised linalool, 1.1% to linalool hydroperoxide, 0.5% to oxidised caryophyllene, while testing with caryophyllene oxide and oxidised myrcene resulted in few positive patch tests. 2/3 of the patients reacting positive to oxidised terpenes had fragrance related contact allergy and/or positive history for adverse reactions to fragrances. As well as the hydroperoxides produced by linalol, limonene and delta-3-carene other oxidation and resinification effects progressively causes other fairly major changes in essential oil quality over time. Autoxidation of fragrance terpenes contributes greatly to fragrance allergy, which emphasizes the need of testing with compounds that patients are actually exposed to and not only with the ingredients originally applied in commercial formulations. #### Chronic Hydroperoxides of d-limonene are potent contact allergens when studied in guinea pigs. They may result when d-limonene is unstabilised against oxidation, or upon prolonged standing at room temperature and/ or upon exposure to light, or when stabiliser levels diminish. The two major hydroperoxides in auto-oxidised d-limonene, are cis- and trans- limonene-2-hydroperoxide (2-hydroperoxy-p-mentha-6,8-diene). In photo-oxidised d-limonene, they represent a minor fraction. Hydroperoxides may bind to proteins of the skin to make antigens either via a radical mechanism or after reactions to give epoxides. The cross-reactivity between the epoxide limonene-1,2-oxide, a potent contact allergen, and the hydroperoxides is NOT significant, indicating different mechanisms of sensitisation. d-Limonene was considered to be weakly carcinogenic for the mouse fore-stomach epithelium, but not tumour producing. In 13-week and 2-year gavage-studies, male rats showed a range of compound-related kidney lesions including exacerbation of age-related nephropathy, mineralisation in the renal medulla, hyperplasia of the transitional epithelium overlying the renal papilla and proliferation of the renal tubular epithelium. Neoplasms were believed to be caused by progression to tubular cell hyperplasia to tubular cell adenomas and, with increasing size, to adenocarcinomas or carcinomas. The similarity of the nephrotoxicity caused by trichloroethylene and N-(4'-fluoro-4-biphenyl)acetamide, tris(2,3-dibromopropyl)phosphate in rats and the species specific nature of the response suggests that degeneration and necrosis of convoluted tubules may be associated with the accumulation of alpha-2u-globin (a2u-G). Since a2u-G is a species and gender-specific protein that is causal for both the cytotoxic and carcinogenic response in male rats, extrapolation of d-limonene carcinogenicity data from rat studies to other species (including humans) is probably not warranted. Humans do not synthesise a2u-G; they do however produce other related low molecular weight proteins capable of binding chemicals that cause a2u-G nephropathy in rats but this does not necessarily connote human risk. The Risk Assessment Forum of the USA EPA concluded; - Male renal rat tumours arising as a result of a process involving a2u-G accumulation do not contribute to the qualitative weight-of-evidence that the chemical poses a human carcinogenic hazard. Such tumours are included in dose-response extrapolations for the estimation of human carcinogenic risk. - If the chemical induces a2u-G accumulation in male rats, the associated nephropathy is not to be used as an end-point for determining non-carcinogenic hazard. Peroxidisable terpenes and terpenoids should only be used when the level of peroxides is kept to the lowest practicable level, for instance by adding antioxidants at the time of production. Such products should have a peroxide value of less than 10 millimoles peroxide per liter. This requirement is based on the published literature mentioning sensitising properties when containing peroxides. Sensitisation may result in allergic dermatitis responses including rash, itching, hives or swelling of extremities. #### D-Limonene | TOXICITY | IRRITATION | |---------------|---------------| | Not Available | Not Available | #### d-limonene | TOXICITY | IRRITATION | |---|--| | dermal (mammal) LD50: >0.005 mg/kg ^[2] | Eye: no adverse effect observed (not irritating)[1] | | Oral(Rat) LD50; >2000 mg/kg ^[1] | Skin (rabbit): 500mg/24h moderate | | | Skin: no adverse effect observed (not irritating) ^[1] | Page 8 of 12 **D-Limonene** Issue Date:19/04/2016 Revision Date: 10/02/2021 # Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye Damage/Irritation | × | STOT - Single Exposure | X | | Respiratory or Skin sensitisation | ~ | STOT - Repeated Exposure | x | | Mutagenicity | × | Aspiration Hazard | X | Legend: 💢 – Data either not available or does not fill the criteria for classification Data available to make classification #### **SECTION 12 Ecological information** #### Toxicity | D-Limonene | Endpoint | Endpoint Test Duration (hr) | |) | Species | Value | | Source | | |------------|---------------|-----------------------------|---------------|------------|----------------------|------------|--------------|-------------------|--------| | D-Limonene | Not Available | | Not Available | | Not Available | Not Availa | able | ole Not Available | | | | | | | | | | | | | | | Endpoint | Test Du | ration (hr) | Species | | | Value | | Source | | | LC50 | 96 | | Fish | | | 0.46mg/L | | 2 | | d-limonene | EC50 | 48 | | Crustacea |
a | | 0.307mg/L | | 2 | | | EC50 | 72 | | Algae or o | other aquatic plants | | 0.214mg/L | | 2 | | | NOEC | 0 | | Algae or o | other aquatic plants | | <0.05-1.5mg/ | L | 4 | _ Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. Monomethyltin chloride, thioglycolate esters, and tall oil ester reaction product Monomethyltin trichloride (MMTC, CAS RN: 993-16-8), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[isooctylmercaptoacetate (MMT(IOTG), CAS RN: 57583-34-3) and methyltin reverse ester tallate reaction product (TERP, CAS RNs: 201687-58-3, 201687-57-2, 68442-12-6, 151436-98-5) are considered as a single category of compounds for the purpose of an environmental assessment. All share a MMTC as a building block. #### Environmental fate: MMT(IOTG), MMT(EHTG), and TERP are sparingly soluble in water (0.6-10.7 mg/L). In water, these monomethyltin compounds undergo rapid degradation by hydrolysis. Although there is no stability data for MMT(EHTG)/(IOTG) or TERP, data for other organotins [DOTC, DBTL and DBT(EHTG)] indicate that the monomethyltin compounds are expected to hydrolyze within minutes to hours in water. The thioester ligands on MMT(EHTG)/(IOTG) will be rapidly displaced to form mono-methyltin hydroxide which eventually precipitates as the oxide. It is also possible that the labile ligands can be displaced by other anions in the medium. The displaced thioester ligands, EHTG/IOTG, can also undergo further hydrolysis of the ester linkage to form thioglycolic acid and ethylhexanol or isooctanol, respectively. MMTC is a solid at room temperature and melts at 43 deg C, boils at 171 deg C, has a calculated vapour pressure of 1.7 hPa at 25 deg C, and is soluble in water (1038 g/L at 20 deg C). The measured log Kow is -0.9 and MMTC is not readily biodegradable. Atmospheric degradation occurs by photochemical induced hydroxyl radicals, with a half-life of 15.7 days. A Henry's Law constant of 3.83 x 10-7 atm-m3/mol predicts MMTC will volatilize from surface water (t1/2 = 99 days and 3 years for model river and lake, respectively). If released to the environment, MMTC is expected to partition primarily into water (54%) and soil (43%). In water, MMTC undergoes rapid degradation by hydrolysis and is expected to hydrolyze within minutes. It is expected that the chlorines in MMTC will be displaced to form mono-methyltin hydroxide which eventually precipitates as the oxide (the alkyltin moiety (MMT) was hydrolytically stable at pH 4, 7, and 9 (t1/2 > 1 year at 25 deg C)). TERP is a liquid at room temperature, boils at 216 deg C, and has a calculated vapour pressure of 0.2 hPa at 25 deg C. TERP is slightly soluble in water (4.4 mg/L), highly hydrophobic (log Kow = 25.5), has low potential for bioaccumulation (log BCF = 2.0), and is readily biodegradable. It is degraded atmospherically by hydroxyl radicals and ozone, with a half-life of 0.5 hours. If released to the environment, TERP is predicted to partition primarily to sediment (99%). MMT(EHTG) is a liquid at room temperature and has a freezing point of -85 to -65 deg C, decomposes at 260 deg C has a derived vapour pressure of 0.02 hPa at 25 deg C, a calculated log Kow of 10.98, is slightly soluble in water (1.8-6 mg/L), and is readily biodegradable. MMT(EHTG) is also degraded atmospherically, with a half-life of 6.3 hours. A Henry's Law constant of 3.18×10+4 atm-m3/mol predicts MMT(EHTG) will volatilize from surface water (t1/2 = 8 hours and 11 days for a model river and lake, respectively). If released to the environment, MMT(EHTG) is expected to partition primarily into sediment (71%) and soil (25%). #### Bioavailability The considerable difference in the structures of the labile ligands causes differences in water solubility between the alkyltin chloride and thioesters affecting their respective bioavailabilities and distribution in the environment. Furthermore, MMT(EHTG) and MMT(IOTG) will degrade in aqueous solution such that organisms will be exposed to the parent material and their different degradation products. MMTC is not an appropriate surrogate for the thioesters or TERP for the ecotoxicity and environmental fate endpoints. In the ecotoxicity tests the organisms were most likely exposed to parent substance as well as hydrolysis/degradation products. MMTC was not acutely toxic to zebra fish (Brachydanio rerio) (96-h LC50 > 102 mg/L) or Daphnia magna (48-h EC50 > 101 mg/L). MMTC inhibited the growth (72-h EC50 = 0.03 mg/L) and biomass (72-h EC50 = 0.02 mg/L) of the green alga Scenedesmus subspicatus (NOEC = 0.007 mg/L). MMTC was not acutely toxic to earthworms at nominal concentrations up to 1000 mg/kg. TERP was not acutely toxic to rainbow trout (Oncorhynchus mykiss) (96-hr LC50 > 4.4 mg/L), inhibited D. magna survival and mobility (48-h EC50 = 0.27 mg/L), and inhibited growth of the freshwater green alga Pseudokirchneriella subcapitata was (72-h EC50 = 0.64 mg/L; NOEC = 0.28 mg/L). MMT(EHTG) was not acutely toxic to B. rerio (LC50 > 6 mg/L; NOEC = 3.6 mg/L) and did not inhibit the growth of S. subspicatus (72-h EC50 > 1.84 mg/L; NOEC = 0.6 mg/L). The 21-d EC50 for reproduction in a chronic Daphnia magna study was > 0.134 mg/L (NOEC = 0.134 mg/L). Version No: 1.7 Page 9 of 12 **D-Limonene** Substances containing unsaturated carbons are ubiquitous in indoor environments. They result from many sources (see below). Most are reactive with environmental ozone and many personal care products) cypress, cedar and silver fir boards, sesquiterpenes houseplants Carpets and carpet backing Linoleum and paints/polishes containing linseed oil Latex paint Certain cleaning products, polishes, waxes, air fresheners Natural rubber adhesive Photocopier toner, printed paper, styrene polymers Environmental tobacco smoke Soiled clothing, fabrics, bedding Soiled particle filters Ventilation ducts and duct liners 'Urban grime Perfumes, colognes, essential oils (e.g. lavender, eucalyptus, tea tree) terpinene-4-ol, gamma-terpinene Overall home emissions oxidation products Soft woods, wood flooring, including Isoprene, limonene, alpha-pinene, other terpenes and > 4-Phenylcyclohexene, 4-vinylcyclohexene, styrene, 2-ethylhexyl acrylate, unsaturated fatty acids and esters Linoleic acid. linolenic acid Residual monomers Limonene, alpha-pinene, terpinolene, alpha-terpineol. linalool, linalyl acetate and other terpenoids, longifolene and other sesquiterpenes Isoprene, terpenes Stvrene Styrene, acrolein, nicotine Squalene, unsaturated sterols, oleic acid and other saturated fatty acids Unsaturated fatty acids from plant waxes, leaf litter, and other vegetative debris; soot; diesel particles Unsaturated fatty acids and esters, unsaturated oils, neoprene Polycyclic aromatic hydrocarbons Limonene, alpha-pinene, linalool, linalyl acetate, Limonene, alpha-pinene, styrene produce stable products which are thought to adversely affect human health. The potential for surfaces in an enclosed space to facilitate reactions should be considered. Major Stable Products produced following reaction with ozone Occupants (exhaled breath, ski oils, oleic acid and other unsaturated fatty acids, unsaturated 4OPA, formaldehyde, nonanol, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic Methacrolein, methyl vinyl ketone, nitrogen dioxide, acetone, 6MHQ, geranyl acetone, > Formaldehyde, 4-AMC, pinoaldehyde, pinic acid, pinonic acid, formic acid, methacrolein, methyl vinyl ketone, SOAs including ultrafine particles Issue Date:19/04/2016 Revision Date: 10/02/2021 Formaldehyde, acetaldehyde, benzaldehyde, hexanal, nonanal, 2-nonenal Propanal, hexanal, nonanal, 2-heptenal, 2-nonenal, 2-decenal, 1-pentene-3-one, propionic acid, n-butyric acid Formaldehyde Formaldehyde, acetaldehyde, glycoaldehyde, formic acid, acetic acid, hydrogen and organic peroxides, acetone, benzaldehyde, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyldihydro-5-methyl-2(3H)-furanone, 4-AMC, SOAs including ultrafine particles Formaldehyde, methacrolein, methyl vinyl ketone Formaldehyde, benzaldehyde Formaldehyde, benzaldehyde, hexanal, glyoxal, N-methylformamide, nicotinaldehyde, cotinine Acetone, geranyl acetone, 6MHO, 40PA, formaldehyde, nonanal, decanal, 9-oxononanoic acid, azelaic acid, nonanoic acid Formaldehyde, nonanal, and other aldehydes; azelaic acid; nonanoic acid; 9-oxononanoic acid and other oxo-acids; compounds with mixed functional groups (=O, -OH, and -COOH) C5 to C10 aldehydes Oxidized polycyclic aromatic hydrocarbons Formaldehyde, 4-AMC, acetone, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyl-dihydro-5-methyl-2(3H) furanone, SOAs including ultrafine particles Formaldehyde, 4-AMC, pinonaldehyde, acetone, pinic acid, pinonic acid, formic acid, benzaldehyde, SOAs including ultrafine particles Abbreviations: 4-AMC, 4-acetyl-1-methylcyclohexene; 6MHQ, 6-methyl-5-heptene-2-one, 4OPA, 4-oxopentanal, SOA, Secondary Organic Aerosols Reference: Charles J Weschler; Environmental Helath Perspectives, Vol 114, October 2006 For limonenes Atmospheric fate: Due to the high volatility of limonene the atmosphere is expected to be the major environmental sink for this chemical where it is expected to undergo gas-phase reactions with photochemically produced hydroxyl radicals,
ozone and nitrate radicals. Calculated lifetimes for the reaction of d-limonene with photochemically produced hydroxyl radicals range from 0.3-2 h based on experimentally determined rate constants. The oxidation of limonene may contribute to aerosol and photochemical smog formation. Calculated lifetimes for the night-time reaction of d-limonene with nitrate radicals range form 0.9 to 9 minutes. The daytime atmospheric lifetime of d-limonene is estimated to range from 12 to 48 min. depending upon local hydroxyl rate and ozone concentrations. Products produced from hydroxy radical reaction with limonene are 4-acetyl-1-methylcyclohexene, a keto-aldehyde, formaldehyde, 3-oxobutanal, glyoxal and a C10 dicarbonyl. The same carbonyls, along with formic acid and C8 and C9 carboxylic acids, may form in reactions with ozone. Ozonolysis of limonene may also lead to the formation of hydrogen peroxide and organic peroxides, which have various toxic effects on plant cells and may damage forests. Products of ozonolysis include bis(hydroxmethyl)peroxide, a precursor to hydroxymethyl hydroperoxide and hydrogen peroxide. The reaction of d-limonene with ozone in the dark results in the formation of 4-acetyl-1-methylcyclohexene and formaldehyde. Reactions with nitrogen oxides produce aerosol formation as well as lower molecular weight products such as formaldehyde, acetaldehyde, formic acid, acetone and peroxyacetyl nitrate. Terrestrial fate: When released to the ground limonene is expected to have low to very low mobility in soil based on its physicochemical properties. The soil adsorption coefficient (Koc) calculated on the basis of solubility (13.8 mg/l, 25 C) and the log octanol/ water partition coefficient (4.23) ranges from 1030 and 4780. The Henry's law constant indicates that limonene will rapidly volatilise from both dry and moist soil: however its absorption to soil may slow the process Aquatic fate: In the aquatic environment, limonene is expected to evaporate to a significant extent owing to its high volatility. The estimated half-life for volatilisation of limonene from a model river (1 m deep, flow 1 m/s and wind speed 3 m/s) is 3.4 h. Some limonene is expected to absorb to sediment and suspended organic matter. Biodegradation and bioaccumulation: Limonene does not have functional groups for hydrolysis and its cyclohexene ring and ethylene group are known to resist hydrolysis Therefore, hydrolysis of limonene is not expected in terrestrial or in aquatic environments. The hydrolytic half-life of d-limonene is estimated to be >1000 days. Biotic degradation of limonene has been shown with some species of microorganisms such as Penicillium digitatum, Corynespora cassiicola, Diplodia gossyppina and a soil strain of Pseudomonans sp (SL strain). Limonene is readily biodegradable (41-98% degradation by biological oxygen demand in 14 d) under aerobic conditions in a standard test (OECD 301 C 'Modified MITI Test (1)', OECD, 1981a; MITI, 1992). Also in a test simulating aerobic sewage treatment (OECD 303 A 'Simulation Test - Aerobic Sewage Treatment: Coupled Units Test'; OECD, 1981b), limonene disappeared almost completely (>93.8%) during 14 days of incubation. Biodegradation has been assessed under anaerobic conditions; there was no indication of any metabolisms, possibly because of the toxicity to micro-organisms. The bioconcentration factor, calculated on the basis of water solubility and the log octanol/ water partition coefficient (log Kow) is 246-262, suggesting that limonene may bioaccumulate in fish and other aquatic species Ecotoxicity: Technical limonene is practically nontoxic to birds on a subacute dietary basis, and is slightly toxic to freshwater fish and invertebrates on an acute basis. for d-limonene: LD50 Colinus virginianus (Bobwhite quail, 16 weeks old) oral >2000 mg/kg LC50 Colinus virginianus (Bobwhite quail, 10 day old) dietary >5620 ppm/8 days LC50 Colinus virginianus (Bobwhite quail, 14 day old) dietary >5000 ppm/8 days LC50 Anas platyrhynchos (Mallard duck, 14 day old) dietary >5000 ppm/8 days LC50 Oncorhynchus mykiss (Rainbow trout) 80 ppm/96 hr (95% confidence limit: 71.4-88.7 ppm); static /92% Al formulated product LC50 Oncorhynchus mykiss (Rainbow trout) 568 ppm/96 hr (95% confidence limit: 437-852 ppm); static /4.0% Al formulated product EC50 Daphnia magna (Water flea, <24 hr old; intoxication, immobilization) 17 ppm/48 hr (95% confidence limit: 11-33 ppm); static /4.0% Al formulated product LC50 Pimephales promelas (Fathead minnow) 966 ppm/96 hr (95% confidence limit: 740-1652 ppm); static /4.0% Al formulated product LC50 Pimephales promelas (Fathead minnow) 38.5 mg/L/96 hr; flow through /from table/ LC50 Leuciscus idus (Golden orfe) 32 mg/L/48 hr /Conditions of bioassay not specified in source examined The acute toxicity of d-limonene ranges from slight to high for aquatic organisms. The lowest acute toxicity values (EC50 or LC50) identified were approximately 0.4 mg/litre for Daphnia (US EPA, 1990b) and 0.7 mg/litre for fish (US EPA, 1990a,b). The no-observed-effect concentration (NOEC) for green algae is approximately 4 mg/litre (US EPA, 1990a). The acute toxicity (EC50 or LC50) of dipentene to Daphnia and fish is about 50-70 times lower than that for d-limonene (US EPA, 1990b). No studies were identified on the chronic toxicity of limonene to aquatic organisms. # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|-------------------------|------------------| | d-limonene | HIGH | HIGH | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |------------|------------------------| | d-limonene | HIGH (LogKOW = 4.8275) | Version No: 1.7 Page 10 of 12 **D-Limonene** Issue Date:19/04/2016 Revision Date: 10/02/2021 #### Mobility in soil | Ingredient | Mobility | |------------|------------------| | d-limonene | LOW (KOC = 1324) | #### **SECTION 13 Disposal considerations** #### Waste treatment methods - ▶ Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. #### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - ► Reuse - ► Recycling - Disposal (if all else fails) #### Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains. - ▶ It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - ► Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. #### **SECTION 14 Transport information** #### Labels Required Marine Pollutant NO HAZCHEM 3Y # Land transport (ADG) | UN number | 2319 | |------------------------------|---| | UN proper shipping name | TERPENE HYDROCARBONS, N.O.S. | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | Packing group | | | Environmental hazard | Not Applicable | | Special precautions for user | Special provisions Not Applicable Limited quantity 5 L | #### Air transport (ICAO-IATA / DGR) | UN number | 2319 | | |----------------------------|--|---------------------| | UN proper shipping name | Terpene hydrocarbons, r | n.o.s. | | Transport hazard class(es) | ICAO/IATA Class ICAO / IATA Subrisk ERG Code | 3 Not Applicable 3L | | Packing group | Ш | | | Environmental hazard | Not Applicable | | Version No: 1.7 Page 11 of 12 **D-Limonene** Issue Date:19/04/2016 Revision Date: 10/02/2021 | | Special provisions | Not Applicable | |------------------------------|---|----------------| | | Cargo Only Packing Instructions | 366 | | | Cargo Only Maximum Qty / Pack | 220 L | | Special precautions for user | Passenger and Cargo Packing Instructions | 355 | | | Passenger and Cargo Maximum Qty / Pack | 60 L | | | Passenger and Cargo Limited Quantity Packing Instructions | Y344 | | | Passenger and Cargo Limited Maximum Qty / Pack | 10 L | # Sea transport (IMDG-Code / GGVSee) | UN number | 2319 | | | |------------------------------|--|--------------------------------|--| | UN proper shipping name | TERPENE HYDROCA | TERPENE HYDROCARBONS, N.O.S. | | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk N | lot Applicable | | | Packing group | | | | |
Environmental hazard | Not Applicable | | | | Special precautions for user | EMS Number Special provisions Limited Quantities | F-E , S-D Not Applicable 5 L | | # Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--------------|---------------| | d-limonene | Not Available | #### Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |--------------|---------------| | d-limonene | Not Available | # **SECTION 15 Regulatory information** ### Safety, health and environmental regulations / legislation specific for the substance or mixture # d-limonene is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs # National Inventory Status | National Inventory | Status | |--|---| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (d-limonene) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - ARIPS | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | # **SECTION 16 Other information** | Revision Date | 10/02/2021 | |---------------|------------| | Initial Date | 11/04/2016 | Version No: 1.7 Page 12 of 12 **D-Limonene** Issue Date:19/04/2016 Revision Date: 10/02/2021 #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index Powered by AuthorITe, from Chemwatch.