Solvesso 150 Nowchem Version No: 1.2 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements #### Chemwatch Hazard Alert Code: 1 Issue Date: 07/09/2016 Revision Date: 15/04/2021 L.GHS.AUS.EN ### SECTION 1 Identification of the substance / mixture and of the company / undertaking #### Product Identifier | 1 Todact identifier | | | |-------------------------------|---------------|--| | Product name | Solvesso 150 | | | Chemical Name | aromatic 150 | | | Synonyms | Not Available | | | Other means of identification | Not Available | | ### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | For Reticulating Parts Wash Tubs for cleaning greasy parts. | |--------------------------|---| |--------------------------|---| ### Details of the supplier of the safety data sheet | Registered company name | Nowchem | |-------------------------|-----------------------------------| | Address | 112A Albatross Road NSW Australia | | Telephone | (02) 4421 4099 | | Fax | (02) 4421 4932 | | Website | www.nowchem.com.au | | Email | sales@nowchem.com.au | ### Emergency telephone number | Association / Organisation | Nowchem | |-----------------------------------|----------------| | Emergency telephone numbers | (02) 4421 4099 | | Other emergency telephone numbers | 0413 809 255 | ### **SECTION 2 Hazards identification** ### Classification of the substance or mixture ${\sf HAZARDOUS\ CHEMICAL.\ NON-DANGEROUS\ GOODS.\ According\ to\ the\ WHS\ Regulations\ and\ the\ ADG\ Code.}$ ### ChemWatch Hazard Ratings | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 1 | | | | Toxicity | 0 | | 0 = Minimum | | Body Contact | 0 | - 1 | 1 = Low | | Reactivity | 1 | | 2 = Moderate | | Chronic | 0 | i | 3 = High
4 = Extreme | | Poisons Schedule | Not Applicable | |-------------------------------|--| | Classification ^[1] | Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Specific target organ toxicity - single exposure Category 3 (narcotic effects), Aspiration Hazard Category 1 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | ### Label elements Issue Date:07/09/2016 Revision Date: 15/04/2021 Signal word Danger ### Hazard statement(s) | H335 | May cause respiratory irritation. | |------|---| | H336 | May cause drowsiness or dizziness. | | H304 | May be fatal if swallowed and enters airways. | ### Precautionary statement(s) General | P101 | If medical advice is needed, have product container or label at hand. | |------|---| | P102 | Keep out of reach of children. | | P103 | Read carefully and follow all instructions. | ### Precautionary statement(s) Prevention | P271 | Use only outdoors or in a well-ventilated area. | |------|---| | P261 | Avoid breathing mist/vapours/spray. | ### Precautionary statement(s) Response | P301+P310 | IF SWALLOWED: Immediately call a POISON CENTER/doctor/ | | |-----------|--|--| | P331 | Do NOT induce vomiting. | | | P312 | Call a POISON CENTER/doctor/ if you feel unwell. | | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | ### Precautionary statement(s) Storage | P405 | Store locked up. | |-----------|--| | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | ### Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. ### **SECTION 3 Composition / information on ingredients** ### Substances See section below for composition of Mixtures ### Mixtures | CAS No | %[weight] | Name | |------------|-----------|--------------| | 64742-94-5 | 100 | aromatic 150 | ### **SECTION 4 First aid measures** ## Description of first aid measures | Description of first aid measur | es | |---------------------------------|---| | Eye Contact | If this product comes in contact with eyes: • Wash out immediately with water. • If irritation continues, seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin or hair contact occurs: Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | Ingestion | If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. | Version No: 1.2 Page 3 of 10 Solvesso 150 Issue Date: 07/09/2016 Revision Date: 15/04/2021 #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. For acute or short term repeated exposures to petroleum distillates or related hydrocarbons: - Primary threat to life, from pure petroleum distillate ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. - Lavage is indicated in patients who require decontamination; ensure use of cuffed endotracheal tube in adult patients. [Ellenhorn and Barceloux: Medical Toxicology] ### **SECTION 5 Firefighting measures** ### **Extinguishing media** - ► Foam. - Dry chemical powder. - ► BCF (where regulations permit). - Carbon dioxide. - Water spray or fog Large fires only. | Special hazards arising from the | ne substrate or mixture | |----------------------------------|---| | Fire Incompatibility | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | | Advice for firefighters | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. | | Fire/Explosion Hazard | Combustible. Slight
fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) sulfur oxides (SOx) other pyrolysis products typical of burning organic material. | | HAZCHEM | Not Applicable | ### **SECTION 6 Accidental release measures** ### Personal precautions, protective equipment and emergency procedures See section 8 ### **Environmental precautions** See section 12 ### Mathada and material for containment and alconium. | Methods and material for conta | ainment and cleaning up | |--------------------------------|---| | Minor Spills | Environmental hazard - contain spillage. Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. | | Major Spills | Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. | Issue Date:07/09/2016 Revision Date: 15/04/2021 ▶ If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. ### **SECTION 7 Handling and storage** #### Precautions for safe handling - ▶ Containers, even those that have been emptied, may contain explosive vapours. - ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - ▶ Electrostatic discharge may be generated during pumping this may result in fire. - Ensure electrical continuity by bonding and grounding (earthing) all equipment. - Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec). - Avoid splash filling. - Do NOT use compressed air for filling discharging or handling operations. - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Safe handling - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. ## Other information - ▶ Store in original containers. - Keep containers securely sealed. - No smoking, naked lights or ignition sources. - Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. ### Conditions for safe storage, including any incompatibilities | Suitable container | Packaging as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. | |-------------------------|--| | Storage incompatibility | Avoid contamination of water, foodstuffs, feed or seed. • Avoid reaction with oxidising agents | ### SECTION 8 Exposure controls / personal protection ### Control parameters ### Occupational Exposure Limits (OEL) ### INGREDIENT DATA Not Available ### **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | | TEEL-3 | |--------------|---------------|-------------|---------------|--------------| | aromatic 150 | 1,200 mg/m3 | 6,700 mg/m3 | | 40,000 mg/m3 | | Ingredient | Original IDLH | | Revised IDLH | | | aromatic 150 | Not Available | | Not Available | | ### Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |--------------|---|--| | aromatic 150 | E | ≤ 0.1 ppm | | Notes: | Occupational exposure banding is a process of assigning chemicals into s
adverse health outcomes associated with exposure. The output of this pro-
range of exposure concentrations that are expected to protect worker hea | ocess is an occupational exposure band (OEB), which corresponds to a | ### MATERIAL DATA Odour threshold: 0.25 ppm. The TLV-TWA is protective against ocular and upper respiratory tract irritation and is recommended for bulk handling of gasoline based on calculations of hydrocarbon content of gasoline vapour. A STEL is recommended to prevent mucous membrane and ocular irritation and prevention of acute depression of the central nervous system. Because of the wide variation in molecular weights of its components, the conversion of ppm to mg/m3 is approximate. Sweden recommends hexane type limits of 100 ppm and heptane and octane type limits of 300 ppm. Germany does not assign a value because of the widely differing compositions and resultant differences in toxic properties. Odour Safety Factor (OSF) OSF=0.042 (gasoline) Version No: 1.2 Page 5 of 10 Solvesso 150 Revision Date: 15/04/2021 NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP #### **Exposure controls** ## Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas ### Personal protection # Eye and face protection - ► Safety glasses with side shields - Chemical goggles. #### Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] # Skin protection See Hand protection below Wear general protective gloves, eg. light weight rubber gloves. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary
from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. ### Hands/feet protection Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. ### **Body protection** See Other protection below ### Other protection No special equipment needed when handling small quantities. OTHERWISE: - Overalls. - Barrier cream. ### ► Eyewash unit. ### **SECTION 9 Physical and chemical properties** Issue Date:07/09/2016 Issue Date:07/09/2016 Revision Date: 15/04/2021 ### Solvesso 150 ### Information on basic physical and chemical properties | Appearance | Clear Colourless Liquid | | | |--|-------------------------|---|---------------| | Physical state | Liquid | Relative density (Water= 1) | 0.8887 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 465 | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | 175 - 214 | Molecular weight (g/mol) | Not Available | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Non Flammable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | 0.52 | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | 4.8 | VOC g/L | Not Available | ### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ### **SECTION 11 Toxicological information** Not Available | Inhaled | The material is not thought to produce adverse health effects or irritation models). Nevertheless, good hygiene practice requires that exposure be occupational setting. Acute effects from inhalation of high concentrations of vapour are pulmo depression - characterised by headache and dizziness, increased reactic Central nervous system (CNS) depression may include nonspecific discontains an acute of the concentration c | kept to a minimum and that suitable control measures be used in an nary irritation, including coughing, with nausea; central nervous system on time, fatigue and loss of co-ordination omfort, symptoms of giddiness, headache, dizziness, nausea, | |--------------|--|--| | Ingestion | The material has NOT been classified by EC Directives or other classific corroborating animal or human evidence. The material may still be dama pre-existing organ (e.g liver, kidney) damage is evident. Present definitio producing mortality rather than those producing morbidity (disease, ill-he vomiting. In an occupational setting however, ingestion of insignificant questions. | ging to the health of the individual, following ingestion, especially where
ns of harmful or toxic substances are generally based on doses
alth). Gastrointestinal tract discomfort may produce nausea and | | Skin Contact | The liquid may be miscible with fats or oils and may degrease the skin, p
The material is unlikely to produce an irritant dermatitis as described in E
The material may accentuate any pre-existing dermatitis condition | | | Еуе | Although the liquid is not thought to be an irritant (as classified by EC Dir characterised by tearing or conjunctival redness (as with windburn). | ectives), direct contact with the eye may produce transient discomfort | | Chronic | Long-term exposure to the product is not thought to produce chronic effer models); nevertheless exposure by all routes should be minimised as a result of the product is not thought to produce chronic effect models. | | | Solvesso 150 | TOXICITY | IRRITATION | Not Available Issue Date:07/09/2016 Revision Date:
15/04/2021 | aromatic 150 | TOXICITY Dermal (rabbit) LD50: >1900 mg/kg[1] Inhalation(Rat) LC50; >4.42 mg/L4h[1] Oral(Rat) LD50; >4500 mg/kg[1] | IRRITATION Eye: no adverse effect observed (not irritating) ^[1] Skin: adverse effect observed (irritating) ^[1] | |--------------|---|---| | Legend: | Value obtained from Europe ECHA Registered Substance
specified data extracted from RTECS - Register of Toxic Effe | s - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise ct of chemical Substances | | | · | | | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye Damage/Irritation | × | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | ✓ | Legend: — Data either not available or does not fill the criteria for classification Data available to make classification ### **SECTION 12 Ecological information** | Solvesso 150 | Endpoint | Test Duration (hr) | Species | Value | Sour | ce | |--------------|---------------|--------------------|------------------------|------------------------------------|-----------------|--------| | | Not Available | Not Available | Not Available | Not Available | e Not Available | | | | | | | | | | | | Endpoint | Test Duration (hr) | Species | | Value | Source | | | EC50(ECx) | 48 | Crustacea | | 0.95mg/l | 1 | | | LC50 | 96 | Fish | Fish | | 2 | | aromatic 150 | EC50 | 48 | Crustacea | Crustacea 0. | | 1 | | | EC50 | 72 | Algae or other aquatic | Algae or other aquatic plants <1m | | 1 | | | EC50 | 96 | Algae or other aquatic | Algae or other aquatic plants | | 2 | | | EC50 | 72 | Algae or other aquatic | Algae or other aquatic plants 19mg | | 1 | | | EC50 | 96 | Algae or other aquatic | Algae or other aquatic plants 6 | | 2 | | | NOEC(ECx) | 72 | Algae or other aquatic | Algae or other aquatic plants 1mg | | 1 | | | EC50 | 48 | Crustacea | | 6.14mg/l | 1 | | | | | | | | | When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the oxygen transfer between the air and the water Oils of any kind can cause: - rowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility - lethal effects on fish by coating gill surfaces, preventing respiration - asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and - adverse aesthetic effects of fouled shoreline and beaches In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation For petroleum derivatives: Chemical analysis for all individual compounds in a petroleum bulk product released to the environment is generally unrealistic due to the complexity of these mixtures and the laboratory expense. Determining the chemical composition of a petroleum release is further complicated by hydrodynamic, abiotic, and biotic processes that act on the release to change the chemical character. The longer the release is exposed to the environment, the greater the change in chemical character and the harder it is to obtain accurate analytical results reflecting the identity of the release. After extensive weathering, detailed knowledge of the original bulk product is often less valuable than current site-specific information on a more focused set of hydrocarbon components. Health assessment efforts are frequently frustrated by three primary problems: (1) the inability to identify and quantify the individual compounds released to the environment as a consequence of a petroleum spill; (2) the lack of information characterizing the fate of the individual compounds in petroleum mixtures; and (3) the lack of specific health guidance values for the majority of chemicals present in petroleum products. To define the public health implications associated with exposure to petroleum hydrocarbons, it is necessary to have a basic understanding of petroleum properties, compositions, and the physical, chemical, biological, and toxicological properties of the compounds most often identified as the key chemicals of concern. ### **Environmental fate:** Petroleum products released to the environment migrate through soil via two general pathways: (1) as bulk oil flow infiltrating the soil under the forces of gravity and capillary action, and (2) as individual compounds separating from the bulk petroleum mixture and dissolving in air or water. When bulk oil flow occurs, it results in little or no separation of the individual compounds from the product mixture and the infiltration rate is usually fast relative to the dissolution rate. Many compounds that are insoluble and immobile in water are soluble in bulk oil and will migrate along with the bulk oil flow. Factors affecting the rate of bulk oil infiltration include soil moisture content, vegetation, terrain, climate, rate of release (e.g., catastrophic versus slow leakage), soil particle size (e.g., sand versus clay), and oil viscosity (e.g., gasoline versus motor oil). As bulk oil migrates through the soil column, a small amount of the product mass is retained by soil particles. The bulk product retained by the soil particles is known as 'residual saturation'. Depending upon the persistence of the bulk oil, residual saturation can potentially reside in the soil for years. Residual saturation is important as it determines the degree of soil contamination and can act as a continuing source of contamination for individual compounds to separate from the bulk product and migrate independently in air or groundwater. Residual saturation is important as it determines the degree of soil contamination and can act as a continuing source of contamination for individual compounds to separate from the Version No: 1.2 Page 8 of 10 Solvesso 150 Issue Date: 07/09/2016 Revision Date: 15/04/2021 bulk product and migrate independently in air or groundwater. When the amount of product released to the environment is small relative to the volume of available soil, all of the product is converted to residual saturation and downward migration of the bulk product usually ceases prior to affecting groundwater resources. Adverse impacts to groundwater may still occur if rain water infiltrates through soil containing residual saturation and initiates the downward migration of individual compounds. When the amount of product released is large relative to the volume of available soil, the downward migration of bulk product ceases as water-saturated pore spaces are encountered. If the density of the bulk product is less than that of water, the product tends to 'float' along the interface between the water saturated and unsaturated zones and spread horizontally in a pancake-like layer, usually in the direction of groundwater flow. Almost all motor and heating oils are less dense than water. If the density of the bulk product is greater than that of water, the product will continue to migrate downward through the water table aquifer under the continued influence of gravity. Downward migration ceases when the product is converted to residual saturation or when an impermeable surface is encountered. As the bulk product migrates through the soil column, individual compounds may separate from the mixture and migrate independently. Chemical transport properties such as volatility, solubility, and sorption potential are often used to evaluate and predict which compounds will likely separate from the mixture. Since petroleum products are complex mixtures of hundreds of compounds, the compounds characterized by relatively high vapor pressures tend to volatilise and enter the vapor phase. The exact composition of these vapors depends on the composition of the original product. Using gasoline as an example, compounds such as butane, propane, benzene, toluene, ethylbenzene and xylene are preferentially volatilised. Because volatility represents transfer of the compound from the product or liquid phase to the air phase, it is expected that the concentration of that compound in the product or liquid phase will decrease as the concentration in the air phase increases. In general, compounds having a vapor pressure in excess of 10-2 mm Hg are more likely to be present in the air phase than in the liquid phase. Compounds characterized by vapor pressures less than 10-7 mm Hg are more likely to be associated with the liquid phase. Compounds possessing vapor pressures that are less than 10-2 mm Hg, but greater than 10-7 mm Hg, will have a tendency to exist in both the air and the liquid phases. Lighter petroleum products such as gasoline contain constituents with higher water solubility and volatility and lower sorption potential than heavier petroleum products such as fuel oil. Data compiled from gasoline spills and laboratory studies indicate that these light-fraction hydrocarbons tend to migrate readily through soil, potentially threatening or affecting groundwater supplies. In contrast, petroleum products with heavier molecular weight constituents, such as fuel oil, are generally more persistent in soils, due to their relatively low water solubility and volatility and high sorption capacity. Solubility generally decreases with increasing molecular weight of the hydrocarbon compounds. For compounds having similar molecular
weights, the aromatic hydrocarbons are more water soluble and mobile in water than the aliphatic hydrocarbons and branched aliphatics are less water-soluble than straight-chained aliphatics. Aromatic compounds in petroleum fuels may comprise as much as 50% by weight; aromatic compounds in the C6-C13, range made up approximately 95% of the compounds dissolved in water. Indigenous microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Unlike other fate processes that disperse contaminants in the environment, biodegradation can eliminate the contaminants without transferring them across media. The final products of microbial degradation are carbon dioxide, water, and microbial biomass. The rate of hydrocarbon degradation depends on the chemical composition of the product released to the environment as well as site-specific environmental factors. Generally the straight chain hydrocarbons and the aromatics are degraded more readily than the highly branched aliphatic compounds. The n-alkanes, n-alkyl aromatics, and the aromatics in the C10-C22 range are the most readily biodegradable; n-alkanes, n-alkyl aromatics, and aromatics in the C5-C9 range are biodegradable at low concentrations by some microorganisms, but are generally preferentially removed by volatilisation and thus are unavailable in most environments; n-alkanes in the C1-C4 ranges are biodegradable only by a narrow range of specialized hydrocarbon degraders; and n-alkanes, n-alkyl aromatics, and aromatics above C22 are generally not available to degrading microorganisms. Hydrocarbons with condensed ring structures, such as PAHs with four or more rings, have been shown to be relatively resistant to biodegradation. PAHs with only 2 or 3 rings (e.g., naphthalene, anthracene) are more easily biodegraded. PAHs with only 2 or 3 rings (e.g., naphthalene, anthracene) are more easily biodegraded as the compounds go into solution. As a result, the remaining product may be degraded as the compounds go into solution. As a result, the remaining product may become enriched in the alicyclics, the highly branched aliphatics, and PAHs with many fused rings. In almost all cases, the presence of oxygen is essential for effective biodegradation of oil. Anaerobic decomposition of petroleum hydrocarbons leads to extremely low rates of degradation. The ideal pH range to promote biodegradation is close to neutral (6-8). For most species, the optimal pH is slightly alkaline, that is, greater than 7. The moisture content of the contaminated soil will affect biodegradation of oils due to dissolution of the residual compounds, dispersive actions, and the need for microbial metabolism to sustain high activity. The moisture content in soil affects microbial locomotion, solute diffusion, substrate supply, and the removal of metabolic by-products. Biodegradation rates in soils are also affected by the volume of product released to the environment. At concentrations of 0.5% of oil by volume, the degradation rate in soil is fairly independent of oil concentrations. However, as oil concentration rises, the first order degradation rate decreases and the oil degradation half-life increases. Ultimately, when the oil reaches saturation conditions in the soil (i.e., 30-50% oil), biodegradation virtually ceases. Excessive moisture will limit the gaseous supply of oxygen for enhanced decomposition of petroleum hydrocarbons. Most studies indicate that optimum moisture content is within 50-70% of the water holding capacity. All biological transformations are affected by temperature. Generally, as the temperature increases, biological activity tends to increase up to a temperature where enzyme denaturation occurs. The presence of oil should increase soil temperature, particularly at the surface. The darker color increases the heat capacity by adsorbing more radiation. The optimal temperature for biodegradation to occur ranges from 18 C to 30 C. Minimum rates would be expected at 5 C or lower. ### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------|---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | ### Bioaccumulative potential | Ingredient | Bioaccumulation | |--------------|-----------------| | aromatic 150 | LOW (BCF = 159) | ### Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | ### **SECTION 13 Disposal considerations** ### Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - ► Reuse - ► Recycling - Disposal (if all else fails) ### Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains. - ▶ It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible or consult manufacturer for recycling options. - ▶ Recycle containers if possible, or dispose of in an authorised landfill. Issue Date:07/09/2016 Revision Date: 15/04/2021 ### **SECTION 14 Transport information** #### **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--------------|---------------| | aromatic 150 | Not Available | ### Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |--------------|---------------| | aromatic 150 | Not Available | ### **SECTION 15 Regulatory information** ### Safety, health and environmental regulations / legislation specific for the substance or mixture #### aromatic 150 is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs ### **National Inventory Status** | National Inventory | Status | |--|---| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (aromatic 150) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | No (aromatic 150) | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | ### **SECTION 16 Other information** | Revision Date | 15/04/2021 | |---------------|------------| | Initial Date | 07/09/2016 | ### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 Version No: 1.2 Page 10 of 10 Solvesso 150 Issue Date: 07/09/2016 Revision Date: 15/04/2021 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European
List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances Powered by AuthorITe, from Chemwatch.